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FOREWORD

This technical report presents a proposed acceptance-sampling M
procedure together with tables of sampling plans for life and relia-
bility testing when the underlying life distribution of items is of
the Weibull form. The study upon vhich this report is based was done
under a Cormell University contract sponsored by the Office of Naval
Research. Part of the material vas presented at the Seventh National
Symposium q Reliability and Quality Control and is published in the
Proceedings” of this symposium. Another part of the report was pre-
sented at ttes 1961 Annual Convention of the rican Society for Quality
Control and was published in the Transactions© of that convention.

The procedures and plans are for use when inspection of the sample
items ie by attributes with the life test truncated at scme specified
time. Lot quality is evaluated in terms of mean item life.

A set of conversion factors has been provided from wvhich attribute
sampling-inspection plans of any desired form may be designed for the
Weibull model or from wvhich the operating characteristics of any given
plan may be determined. In addition, a comprehensive collection of
Weibull sampling-inspection plans has been designed. Also igcluded
are tables of ratios for adapting the Military Standard 105B” plans to
life testing and reliability applications. 1In all three of these
elements of the study and the report, the exponential model has been
included as a special case of the Weibull diutribution. Both the
procedure and plans are for product for which the value for the Wei-
bull shape parameter is known or can be assumed. Conversion factors I
and tables are provided for a wide range of values for this parameter.

|
!

These proposed techniques represent generalizaticns of procedure
and plans devegoped for the exponential case by Sobel and Tischend
and by Epstein’. Related work has been done by Gupta and Groll® for
the gamma form of life-length distribution. Recently, an interim
handbook of sampling procedures and tables based on the exponential
distribution has been published by the Office of the Assistant
Secretary of Defense (Inatauatu?ns and Logistics) based in large

part on Professor Epstein's + It is hoped that the plans and
procedures provided in this report wilil serve as a usefv. supplement
to this work.

Henry P. Goode

John H. K. Kao

Department of Industrial and Engineering
Administration

8ibley 8chool of Mechanical Engineering

Cornell University, Ithaca, New York
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SECTION 1
INTRODUCTION

1.1 The Weibull Model in Life and Reliability Testing.

The Weibull distribution is a statistical model that has been found
to be realistic for application in life-length and reliability testing for many
mechanical and electronic components. It is a three-parameter model that takes
the form of a general failure distribution in which the failure rate need not
necessarily be constant.

Further discussion of this distribution as & life or failure model will be
found in Appendix A of this report. Reference may also be made to a paper by
Kaoe. The exponential distribution, which is widely used as a statilt\ical
model in reliability analysis and inspection, can be conaidered as a special
form of the Weibull, one which requires the assumption Of a constant failure
rate.

The three Weibull parameters are (1) a "scale" parameter, which is com-
monly symbolized by the letter @, (2) a shape parameter, for vhich B is the
symbol commonly used, and (3) a location parameter, designated by 7. The
general nature of the Weibull model may be observed from the density functions
plotted in Figure 1. For use of the procedures and plams covered by this
report, only values for the shape parameter,Bf, and for the location parameter,
7, need be determined; the value for the "scale" parameter, (&, need not de
known.

From Figure 1 it will be noted that the form of the distributicn depends
on the shape parameter, f. In this figure the Weidbull probability density
function has been plotted for various values of f. A plot for f = 1, the
exponential case, has been included for reference. This initial set of Weidbull
sampling plans is for product for vhich the value of this parameter is known
or can be assumed to approximate some given value. Conversion tables and
sampling plans are provided for nine values for P ranging from 1/3 to 5.

A relatively small number but a broad renge of values for £ was selected
for this initial study. The prircipal objectives wvere to develop practical
methods and techniques and to explore the effect of differences in value for
this parameter (which is the key one for the Weibull distribution). As the use
of this distribution as a statistical model increases, additional conversion
tables and sampling inspection plans may be constructed for intervening values
for B, particularly in the widely encountered region ranging from 1/2 to 2.
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In many applications the shape parameter, £, may be known for the product
in question. From past analysis of life testing results, it may be established
that some value of knovn magnitude may be expected regularly and so may be used
in sampling inspection procedures. Por example, for a certain cless of electron
tubes of receiving tyype, Kao9 has found from study of approximately 2,000 tubes
of a variety of types and applications that a value of 1.7 may be appropriate.
For ball bearings, Lieblein and Zelenlofound s mean value of 1.51 with 50% of
approximately 5,000 bearings tested having B in the interval 1.17 to 1.74.

For products for vhich the value for f is not known, this parameter must
be estimated using failure data from pest inspection and research. A graphical
method for estimation will be found in Appendix B of this report. Also, a
simple and practical mathematical procedure is currently dbeing developed and
should be available soonn.' Further information on estimation may also be found
in papers by Kao12’13.

Also, as indicated, in application of these plans end procedures, the value
for 7, the locatin parameter, must likewise be known or assumed to approximate
some given value. For many applicetions (for products for which there is risk
of failure immediately after manufacture or after being put to use), a value of
zero for 7 can usually be assumed. Methods for estimation of > when estimates
must be made will be founé in the appendix and in the references cited above.

1.2 Form of Acceptance Criteria

For the sampling-inspection plans and procedures presented in this
technical report, lot or product Qualit; is evaluated in terms of mean item
life, u. Work is under way on the devel: pmeat of related plans and procedures
for which the evaluation will be for fajlure rate and for reliable life as
criteria.

Inspection of sample items is ty attributes; all that must be done in
testing is to note the number of items that have failed and to do so without
reference to the specific length of 1ife for each. Testing of the sample items
is stopped or truncaved at the end of some preassigned test period length, t.

Specifically, the following acceptance-sampling procedure for life testing
has been assumed:

1. Select at random a sample of n items from the lot.

2. Place the sample items on life test for some preassigned period of
t time units.

3. Denote by y the number of failures observed prior to time t.

-2-
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L. Accept the lot if y & c, a specified acceptance number; if y > ¢,
reject the lot.

Curtailed inspection for submitted lots prior to t is possible for the rejection
of the lot since it {s pocsible to oLserve (c + 1) failures before time t.

Note that this acceptance procedure is the same as that specified for the
MIL-STD-105B sampling plans a:id other collections of attribute plans with the
exception of the introduction of a testing truncation time, t. It is also pos-
sible (as for the 105B plans) to employ double or multiple sampling instead of
single sampling as described above and by so doing reduce the average number of
items at p' = ACL that must be put on life test. However, the "economy"
achieved is at the expense of longer elapsed testing time.




SECTION 2
THE BASIC CONVERSION FACTORS

2.1 The Function of the Factors.

The probability of acceptance for a lot, P(A), under plans of the
above form depends on the probability, p', of item life being less than (or
equal to) the test truncation time, t. For cases for which B i{s known and
vith time, t, preassigned, p' is thus a function of mean item life, u, only.
The operating characteristics of any specified plan thus depend only on t and .
In order to provide tables for general use in the design or evaluation of plane
for any application rather than working in terms of specific values for t and
M, the dimensionless ratio t/u is used. In spplication of the plans or tables to
any application, a conversion between the ratio and specific t and u values is

extremely easy to make.

A set of conversion tables has been computed to provide for the Weibdbull
distribution the comnection between the dimensionless quantity t/u and p'
(Tebles 1 and 2). With these tables, acceptance-sampling plans of desiired form
can be designed or evaluated using attribute sampling theories and practice.

" For cases for vhich the lot size, N, is large in relation to the sample
size, n, the number of failures prior to t approximates the binomial distribu-
tion with parameters n and p', vhere p' is defined as the arees under the life-
length distribution up to t. The probability of acceptance P(A) depends on the
cimulative number of failures prior to time t. This probability is given by

PA) Py sc)= £ (§) p¥ (1op )™ (1)
y=0

The binomial distridution has been used for the sampling plans given in this
report except for cases for vhich the sample size is relatively large. For
these, the Poisson distribution has been used as an approximatioan to the
binomial. The probability of acceptance for the Poisson is given by

(o] 1y 0
P(A) =P (ysSc)e = ﬂ_)__e-np (2)
y=0 y.

An important use for the conversion tables provided in this report is in
the adaptation of the MIL-STD-1053 plans to reliarility and life-testing applica-
tions. In describing the operating characteristics of these plans, the guality
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of submitted lots is measured in terms of p', the per cent defective. With the
conversion factors this form of description may dbe converted directly to measure-
ment in terms of the t/u ratio. With this conversion the 10°3 plans may be
cataloged for appropriate choice in reliability applications. Alternatively, if
some 105B plan has beun selected, its operating characteristic curve may de
de‘.ermined in terms of the t/u ratio, or if the testing time, t, has been speci-
fied, in terms of the lot mean, . An example employing such a conversion is
shown later in this report. It should also be noted that with the matching plana
provided in the 105B collection, the options of double-sampling and multiple-
sampling are also available. The sample sizes and acceptance numbers listed may
be used and the established procedures for employing this form of sampling in
attribute inspection may be followed. Special tables of conversion ratios,
together vith procedures for their use, for directly applying the MIL-STD-105B
1ans to reliability and life-testing are included in Section 5 of this report.

2.2 Computation of the Conversion Tables.

The prodadility p', of an item failing prior to some testing time t
is the value of the cumulntive demsity function at t. For the Weildbull model
ass:med in this report [Equation (A16)], this probability {is,

p' =1 - exp [ -(t/n)a] (3)

Since the mean of this Weibull distribution is, u = T (-;- +1), p' may be

re-written as,

pel-ep(-LEr(ls1)1?) (%)
B 2

Solving for t/u ,

¢/ = [ -1n(1-pr) TP

/r(d+1) (5)

-]

This equation establishes the relationship between the dimensionless ratio
t/u and p', the probability of item life being equal to or less than t.

It may be noted that for the attribute form of sampling inspection con-
sidered here, only this dimensionless ratio between test time, ¢, and item
mean life, u, need be of concern. The Weibull scaie parameter, n has dbeen
eliminated. In the mathematices of these plans and procedures it has been assumed
that the Weibull location perameter, 7, has a value of 0 [see Equation (A16)].
If in application, however, 7 has some non-zero value, all that is necessary is

-5
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to subtract the value for > from the value for t to get t o’ and from the true
lot mean u, to get Ko These converted values, to and Ho» are then used for
all computations. Any solutions in terms of to or W, can be readily converted
back to real values by simply adding the value for 7. This procedure for
handling the location parameter will be illustrated later in Example 3 and in
Example 9. Of course, when 7 = O, only the parameter f (or b, which is 1/8)
must be known.

To put this relationship equation [Equation (5)] in a form for which
nunerical values for relationships may be more easily computed, the fol.lowing
change is made:

t/u = [-1n(1-p')1° / M(bs1) = exp { 1n [-1n(1-p')IP) / {b41)
= exp (b ln [-1n(1-p')]) /M(b41) . (6)
Values for the expression
" { -1n(1-p") ) (7)

wvere obtained from a table of the inverse of the cumulatixe probability function
nf e:xtremes prepared by the National Bureau of Sta.nda.rdsl . This table tabulates

the function

v = «1n (-1n Oy) . (8)

By substituting (1 - p') for oy the negative value of Expression(7)is obtained.
Values for e raised to this power were read from the National Bureau of Standards
tables of the exponential mnctionl5. Values for the gamma function, I'(b + 1),
vere obtained from a table prepared by Dvightl .

A table of values for the per cent truncation, (t/u) x 100%, for various
values of p' has been prepared. It is presented as Table 1. Values for p' range
from .010% to 80% with the tabulated values selected in accordance with a
standard preferred number series. For convenience in both tabulation and use,
both the: ratio t/u and p' are expressed as percentages rether than decimal ratios.

For determining wvithout interpolation the value for p' when some rounded
value for the (t/u) x 100 ratio is given, the relatively simple task of preparing
a table of p' has been carried out.

The table of values for p' for various values for (t/u) x 100 is presented
as Table 2. Values for (t/u) x 100 range from .010 to 100. Again, the values
used for tadbulation form a preferred number series. With this alternate table

6=
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available together with the basic original one (Table 1), e conversion may
readily be made either way--from (t/u) x 100 to p' or fram p' to (t/u) x 100.
Also, it will be noted that the two supplement esach other in that £ values
giving a compressed range of figures in one table give an axpanded range in the
other. This allows for somevhat more precise interpolation in conversion. The
two together supply basic data for the design or evaluation of any life-testing
and reliability sampling inspection plan based on the Weibull (or exponential)
distribution and of an attribute form. For general information, the relationship
between the (t/u) x 100 percentage and p' as given by these tvo tables has been
plotted in Figure 2 for each of the various P values.

Bt [
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2.3 Examplen of Application.

Example Sl!

One form of application that should be of consideradble use is that of
evaluating the quality protection afforded by a proposed or existing attribute
acceptance-sampling plan. A possibility of immediate interest is the use of a
plan from the MIL-STD-105B Tables.

Suppose, for example, that a 105B plan vith an Acceptable Quality Level
(AQL) of 2.5% and Sample Size Letter J has been proposed for use. Reference
to Table IV-A of the 105B Standard shows that for single sampling a sample size
of T5 items and an acceptance number of 4 1s specified. Suppose life testing
time is to be 80 hours with simply a count made of the test items failing by the
end of that period. From inspection experience with the product to vhich the
plan is to be applied, it seems most appropriate to assume a Weidbull distridution
vith a value for B of 1 2/3. The lot size will be relatively large compared to
the sample size of 75 so bin-mial probabilities for sample items can be assumed.
Actually, Table III of MIL-STD-105B specifies that the lot size should be from
1300 to 3200, 501 to 800, and 181 to 300 for Inspection Levels I, IT, and III
respectively.

The first step is to determine the probability of acceptance, P{A), for
various values of p'. These probabilities can easily be obtained from any one of
the readily available tables of the cumulative binomial terms or tables of the
incarplete beta distribution. They may also be read from the operating character-
istic curves published as a part of the MIL-STD-105B Tables (Table VI). A few
of these values for this plan are shown in the first and second cgluma of the
tabulation below. Next, the firast of the comnversion tables, Td.bie l, 18 used to
obtain values for the ratio (t/u) x 100 for each of the p' values. These table

values are listed in the third column. Finally, using the value for t of 80 hours,

XA
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each of the (t/u) x 100 ratios are converted to values for u. For example, the
ratio for a p' of 5% 1s 18.84. Thus (80/u) x 100 = 18.84 or u = 425 hours. These
computations have been made with results as shown in the last column of the
tabulation. One may nov note that {f a lot is submitted to this plan vhose mean
life 1s 215 hours, the probability of its acceptance is only .0l or one in a
hundred; on the other hand, if the mean life for a lot is 745 hours the proba-
bility of acceptance i3 .98. These probability and mean life figures based upon
t = 80 hours can be plotted, if desired, to give the operating characteristic
curve. (0Of course similar OC curves for other known values of t may be plotted.)
This curve is the one shown for B = 1 2/3 in Figure 3.

Results of Computations - Example ).

p' (in %) P(A) (t/u) x 200 m
2 .98 10.77 Th4s
3 .92 13.78 580
4 8 16.42 490
5 .68 18.84 425
6 1/2 46 22.15 %0
8 27 25.20 315
10 .12 29.01 275
12 Ol 32,58 245
15 .01 37.63 215

To indicate the importance of considering the shape of the life density for
a product, operating characteristic curves for this plan have been cumputed and
plotted in Figure 3 for other selected values for B. Included is a curve for the
case in vhich f equals 1. This represents the exponential distribution widely
used as a model in reliability and life-testing sampling inspection. From these
curves it may be noted that if the underlying distribution is actually of the
Weibull form and the exponential is essumed, the actual operating characteristics
of the plan may differ very much from those contemplated. A discuesion of the
sensitivity of statistical procecdures in current use to departures from the
assumed exponentiality will be found in a paper by Zelen and DlnnanillerIT.

It may be noted in connection with this example that the MIL-STD-105B plans
include matching double and multiple sampling plans. ‘- These offer alternative
possibilities for reliability and life testing applications. If incoming lots are
efther quite good or quite bad (as is ccmmonly the case), substantial reductions
in the number of items that must be tested may be made. If items are expensive

and if testing is destructive (as it most likely will be in life testing), e
-8-
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reduction in average sample cize may be of importance. If the test period, t,
is relatively long, however, the elapsed time required for testing a second
sample (or subsequent ones in multiple sampling) when such samples are required
to reach a decision may raise 1ifficulties.

Example (2)

For a second example, consider the case of a manufacturer who knows
that his current production of a certain component has a mean life of approxi-
mately 52,000 cycles. Furthermore, he has learned from past experience with
life testing of these components that he can assume a B value of 1/2. A life
test period of 1000 cycles seems justifiable and facilities are avallable for
testing a sample of 150 items from each lot. This manufacturer would like to
know vhat acceptance criteria to apply so that virtually all lots will be passed
as long a8 the expected mean life of 52,000 cycles is maintained. He would also
like to know what consumer protection will be afforded. A final question is
vhether for this application a change to a proposed test period of 300 cycles
and a sample size of 500 items would yield comparable or better quality assurance.

The first step towvard ansvers to these questions is to compute the (t/u) x
100 ratio at the mean life considered acceptable. This ratio is (1000/52,000) x
100 or 1.93. Entering Table 2 with this value gives (with rough interpolation) a
value for p' of 18% for a B value of 1/2. Assuming a probability of acceptance
of .95 is desired for lots at the acceptable quality level of 52,000 nycles for
the lot mean, entering a table of the cumulative binomial distribution indicates
that an acceptance number, c, of 35 items gives this probability for a sample
size of 150 items. This, then,is the desired acceptance criteria.

A simple measure of consumer's protection is to find the lot mean value at
vhich lots will likely be rejected. Suppose a probability of rejection of .90
(of acceptance of .1C) seems to be a meaningful figure. Reference again to a
binomial table indicates that for n = 150 and c = 35, the probability of rejection
is .90 at & p' of approximately 28.4%. Entering Table 2 with this value gives a
(t/u) x 100 ratio of approximately 5.7. Substituting a value of 1000 cycles for
t in this ratio and solving for pu gives a lot mean of 17,500 cycles. This figure
for consumer's protection can be interpreted as follows--since this quality
(u = 17,500) corresponds to a P(A) = .10, under this sampling plan (n = 150,

c = 35) on the average 90% of the lots passed to the consumer will have a mean
life of no less than 17,500 cycles. This may or may not represent adequate
consumer protection. If it does not, & plan with a larger sample size must be

designed and used.
-9-



An answver to the third question may be found by making similar computations
for an n of 500 items and a value for t of 300 cycles. In this case (t/u) x 100
equals (300/52,000) x 100 or .58. PFrom Table 2 it is found that p' is approxi-
mately 10% at this truncation ratio. Scanning & binomial table indicates an
acceptance number of 62 will give a probabil‘ty of acceptance of .95 or mcre vhen
the sample size is 500 items. With this sample size and acceptance number, the
probability of rejection is .90 at a p' value of approximetely 14%. With this
value for p', a (t/u) x 100 value of epproximately 1.15 is found from Toble 1.
Substituting 300 cycles for t in this ratioc gives a lot mean value of 26,100
cycles as compered to 17,500 cycles for the first plan. Thus this combination
of sample size and length of test period gives better discrimination between good
and bad lots and the consumer is therefore better protected.

E le

In this example, reference will be made to a case for which the com-
ponent life can best be characterized by a mixture of two Weibull distributions.
Kaol3 gives an example of this for the life of electron tubes. From electron
tube life experience, the wearout failures, i.e., drift of electrical properties
beyond some set limits, invariably occur near the latter part of life. Hence
the failures of electron tubes are classified both as of the wearcut type and as
of the non-wearout or catastrophic type, each type being represented by a sub-
populatibn of the whole. In electronic terms, these failure types are referred
to as electrical rejects and inoperative rejects respectively. The catastrophic
(or inoperative rejects) sub-population is assumed to start at time zero, i.e.,
the location parameter 71 = 0, vhen the components are first exposed to risks.
The wearout (or electrical rejects) sub-population is assumed not to start until
some delayed period has elapsed, 1i.e., 72 > 0, since the limits set on the com-
ponent drift depend on many factors such as environmental stress, maintenance
policy, legal regulations, and like factors. Since, in general, failures due to
vearout and to non-wearout reasons are identifiable, it is possible to treat the
twve sub-populations separately.

Suppose that for some application of electron tubes, the manufacturer's past
experience indicates that the Weibull shape parameter Bl’ associated with the
catastrophic sub-population has a value of 1/, and the shape parameter associated
with the wearout sub-population, 52, has a value of 3 1/3. Suppose further that
electrical drift or wearout failure has never been experienced prior to 1000 hours
of 1ife. Under these conditions the location parameter values will be:

7, = 0 and 7, = 1000. Suppose further that the manufacturer knows that appra:i-

1 2
mately 2 1/2% of the total tube failures are of the inoperative type and that the

«10-
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mean tube life for his current production is,
k= (.025) (25,000) + (.975) (11,000) = 11,325 hrs.

vhere Hy = 25,000 is the mean life of the catastrophic sub-population and

M, = 11,000 is that of the wearout sub-population. (See the appendix of the
paper by Kaol3 for the derivation of this formuls.) A life test period of 500
hours for inoperatives and of S000 hours for electrical drifts are recommended
and acceptance numbers e = 2 and c, = 2 for each failure type are considered
satisfactory. What are the necessary sample sizes so that the producer's risk
is no more than 5%? Also, what would be the consumer's protection under this
sampling plan?

To answer these questions, the two sub-populations are treated separately
and are denoted by subscripts 1 and 2 as done before for the inoperatives and
electrical drifts respectively. For inoperatives, (tl/ul) x 100 =
(500 x 100) /25,000 = 2,0, Entering Table 2 with this value gives a value for
'y of 18.13% for a B value of 1/2. From a binomial table with P(A) 2 .95 and
Py = 18.13% a value for n) = 5 is obtained. The same binomiel table for
n, =5, ¢, =2 and P(A) .10, gives p', = T5%. Entering Table 2 vith this
value gives (tl/ul) x 100 = 96.5 and T (500 x 100) /96.5 = 518.24 hours, a
value which will be commented on later. For electrical drifys, 72 must be sub-
tracted from t, end u, giving nev values for t, end u, equal to 4,000 and 10,000
respectively. Hence, (t2/“2) x 100 = (4,000 x 100) /10,000 = 40.0. Entering
Table 2 with this value gives for p2' a figure of 3.25% for a £ value of 3 1/3.
From a binomial table with P(A) 2 .95 and - 3.25%, it 18 found that n, = 25.
The same binomial table for n, = 25, c, = 2, P(A) 5 .10 gives P = 20%.
Entering Table 1 with this value gives (t2/"2) x 100 = T1.0k. Thus Hy =
(4,000 x 100) /71.0k = 5,631 hours, which upon readding 7, glves 6,631 hours.
Combining this value of the corrected Ky with “1 obtained for inoperatives gives
the consumer's prote~tion expressed in terms of a mean value equal to,

o= (.025) (518.24) + (.975) (5,631) = 6,478 hours.

This means under the sampling plan of running a life test for inoperatives of
n=5and c =2 for 500 hours and another life test for e)ectrical drifts of
n=25and c = 2 for 5000 hours, 90% of the lots passed to consumers will have

a mean life of at least 6,478 hours. To illustrate the danger of extrapolation
in a mixed distribution case, assume taat the second test of 5000 hours duration
wvas nct run at all. Then the producer could only base his conclusion upon the

ell-
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500-hour test and claim as consumers' protection, with 90% confidence, & mean
life of at least 518.24 hours, a result which is altogether too modest.
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SECTION 3
THE TABLES OF SAMPLING PLANS

3.1 Construction and Use of the Basic Tables.
A basic set of tables of sampling inspection plans has been prepared,
one table for each of the nine values for P for which the relationship between

e T T e, K W56 L =

5

p' and (t/u) x 100 has been established. These are presented near the end of
this report as Tables 3a through 3i.

Each table lists values for the acceptance number, c¢, anid for the minimum
sample size, n, for a variety of objective t/u ratios. The plans are designed
so that if 100 times the ratio between the test time, t, and the mean life value
for the lot, u, or (+/u) x 100 18 equal to or greater than the selected column
value in the table, the probability of acceptance, P(A), will be .10 or less.
Stated otherwise, the plans assure with 90% confidence or more the acceptance of
lots for which the (t/u) x 100 ratio is equal to or less than the selected column
or objective value. The ratios in the column headings (for which the plans have
been designed) may thus be coneidered in the same way as lot tolerance per cent
defective (LTPD) values are considered in describing operating characteristics
of the widely used attridute and variebles acceptance plans.

It has been assumed that in acceptance inspection for reliability the
consumer's risk will be of primary concern. For this reason, these plans have
been cataloged by P(A) = .10 ratios which measure consumer protection. However,
in addition for each plan the (t/u) x 100 ratio is given for wvhich the pro-
bability of acceptance is .95 or more. Each such P(A) = .95 ratio value is shown
in parentheses under the corresponding scmple size number. These ratio values
may be considered similar to acceptable quality level (AQ.) values in indicating
the producer's risk. If the mean 1life for the items in the lot is such that the
(t/u) x 100 ratio is equal to or 1rss than the tabulated value, there is
assurance with confidence of 95% or more that the lot will be accepted.

The two ratio values, cne in the column heading and the other in the beody
of the table in parentheses below the sample size number, broadly descride the
operating characteristics of each plan and s0 form a basis for making an appro-
priate choice for any acceptance inspection application. These values may also
be used to determine approximately the operating characteristics of any
acceptance plan that has been specified or that is in use and for vhich n and ¢
match closely one of the table plans. It is easy to convert these ratios to
hours, cycles or some other measure of lifelength to fit the product and test
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specifications involved. Thei will be {llustrated by two examples which follow
later.

In the preparation of these plans, binomial tables prepared by (."x’ubbsl8 vere
employed for values for c up to 9 and for n up to 150. For higher values of c and

for values for n up to 60 or so, the Pearson tables of the incomplete beta-func-
tion were usedlg. Higher values of n were determined by the Poisson approxima-
tion, using a table of np' values prepared by Cameron2°. The Poisson match vas
checked and vas found close, even for the smaller sample sizes and the larger
values for p'. The slight differences that may exist in some cases is on the
conservative side; the value for n is slightly larger than that theoretically
requirel. As the tables werc prepared as a part of an exploratory study, plans
showing extremely large sample sizes have been ir~luded to indicate the order of
magnitude involved and not with the expectation that samples of this size would
ordinarily be used in acceptance-inspection practice.

3.2 Examples of Application of the Tables.

Example ( h )

Suppose an acceptance inspection plan is required which will aecsure
with 90% confidence a mean life for items of 4000 hours or more for each lot
accepted. Also, suppose it will be desirable to assure the producer that if the
mean life for items in a lot is 25,000 hours or more, there will be a high
probability (.95) that the lot will be accepted. A test period of 400 hours for
the inspection of sample items has been specified. Through past experience it
has been determined that the distribution of item life 1s of the Weidbull form
with the shape parameter, B, equal to approximately 1/2. Also, a value for
7, the location parameter, of O can be assumed.

For these sampling plan specifications, 100 times the ratio of test time, t,
to the mean life, B 107
desired 1s (400/4,000) x 100 or 10. At the .95 probability value the ratio is
(400/25,000) x 100 or 1.6. A plan approximately meeting these requirements may
be found in Table 3b wvhich gives plans for distributions for which 8§ = 1/2. The
column for which (t/u) x 100 = 10 1s entered and then scanned for the ratio value
1.6 (or one closa to this value) among the values in the column listed in

for which a probability of acceptance of .10 or less is

parentheses. This value is found well down in the column. The corresponding
sampling inspection plan specifies a sample size, n, of 43 and an acceptance
number, ¢, of 11.

-1k-
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Suppose that a sampling inspection plan specifies that a random nample g

of 3000 items is to be drawn from the lot and tested for a period of 2,480 hours 4
I2 no more than 7 items fail before the end of the test period, the lot is to be
accepted; 1if more than 7 items do not live through the test period, the lot is
to be rejected. Life measurements for past inspection and research for the
product to which the plan 1s to be applied indicate the distribution is of the
Weibull form with B equal to approximately 1 2/3. Also, a value for 7, the
location parameter, of zero is indicated. The prospective user of this plan
would like to know what quality protection will be given. Inspection of Table
3d vhich lists plans for B = 1 2/3 discloses a plan matching reasonably well the
one specified, the plan for which c, the acceptance number, is 7 and n, the
sample size, is 3,019. For this table plan the (t/u) x 100 ratio at P(A) = .10
is L, Substitution of the specified test period length of 480 hours for t gives
(L30/u) x 100 = 4. Solving for u gives 12,000 hours as the mean value for item
life for the lot for which the probability of acceptance is .10 or less. A
similar substitution for t using the ratio at which P(A) = .95 gives
(480/u) x 100 = 2.1. Solving for u again gives 23,000 hours as a lot mean value
for which the probability of acceptance is .95 or better. The values for the
lot mean at these two probability values dbroadly, but very practically, describe !
the operating characteristics of the specified plan.

3.3 Some Points of Practice.

In the use of these tatles of plans, several points of practice should
be noted. First, in using the p' values associated with values for (t/n) x 100
for the Weibull distribution to find values for c and n, the binomial probability
distribution has been used. Hence the size of the lot should be relatively large
compared to the size of the sample for the stated probability values to pre-
cisely apply. Sscond, 1f a plan is nct available for which a (t/u) x 100 ratio
in the column headings matches closely the desired ratio, to be conservative, a
plan should be chosen from the column with the next smaller ratio heading. This
will assure v!'h confidence greater than 90% the specified mean life for
acceptance. 7¢ the acceptable quality level (the ratio or mean life for which
P(A) = .95) must also be guaranteed and a matching ratio value is not found in
the selected column of plans, a plan wvith the next greater value should be
selected. Lots equal to or better than the specified "acceptable quality” will
have an assurance of greater than 95% of being accepted. With proper care, scme
rough interpolation may be employed between listed sample sizes (either down or
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across the table or both) to find a new plan having more nearly the desired
characteristics. Finally, 1f a plan is found for which the desired or given
ratios closely match but for practical reasons it seems desirable to round off
the sample size to the nearest number ending in zero or five, such rounding off
should be done to the next larger size. This will assure retention of the proba-
bility values of .10 or less for the ratios given in the column headings.

=16-
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SECTION 4
PLAN DESIGN IN TERMS OF QUALITY LEVEL RATIOS

4.1 The Rela ionship Between Acceptable and Unacceptable Lot Quality.

Sampling plans are most conveniently cataloged. selected, or designed
in terms of a producer's risk and a consumer's risk. Some lot quality figure
vill be specified as satisfactory and for lots of this quality or better the
probability of acceptance should be high, conventionally .95 or more (the pro-
ducer's risk or rejection small, .05 or less). For the plans for life testing,
described in Section 3, this specification will be a lot mean life, u.95, at
vhich P(A) 3 .95. Likewise, an unsatisfactory guality level will be specified
for vhich the probability of acceptance will be low, conventionally .10. This
specification will be a lot mean life, u ., &t which P(A) 5 .10. (If other
values Of producer's and consumer's risks must be determined for these plans,
reference may be made to a method in a paper by l(a.oal.)

In plan selection or design, one objective is to find a combination of
sample size and acceptance rumber vhich simultaneously yields the desired values
for both the consumer risk and the producer risk. If working from tables of
plans, the values for lot quality at the two risk figures may be found listed
in the tables. In the design of a plan, one may cut and try until a suitable
plan is found in a manner suggested in Example 2. Also, factors are available
which, in conjunction with the conversion tables supplied here as Table 1 and
Table 2, enable a direct determination to be mdeao

A simple alternative esolution for the form of acceptance inspection dis-
cussed here 1s to make use of one ¢f {ts properties, namely that for a given
acceptance number, ¢, (and for a given value for f) the ratio betw:en the lot
means at the two risk values is approximately constant for all valves of sample
size, n. These ratios (or multipliers) have been determined as part of the study
underlying this report for values for ¢ ranging from O to 15 for each of the
various values for f. They are presented in Table 4. The table values are in
the form of multipliers for finding “-95’ given ® 0 or by using the reciprocal
of the multiplier, for finding u ,,, given K g5° That 1is, k.95 (for wvhich
P(A) = .95) 1s equal (approximately) to K 10 (for which P(A) = .10) times the
appropriate table multiplier. These multipliers may be used both to assist in
evaluating the operating characteristics of same given plan and to assist in the

design of a plan to meet same acceptance-inspection requirement.
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L.2 An Example of Use of the Table of Multipliers.

Example (6
For a certain purchased component the lot mean life should be at leart

4,000 hours; this value is accordingly chosen for K0 Alsc, the producer has
been informed that lots whose mean life is 10,000 hours or more are reasonably
sure of acceptance through the sampling procedure. Accordingly, this value is
to be used for p'95. A value for B of 1 can be assumed. A testing period, t,
of 200 hours has been specified. Values for sample size, n, and acceptance
number, c, must be found to meet these requirements.

“.95/“.10’ is 10,000/4,000 or 2.5.
Examination of the table of mean life multipliers, Table 4, under the column

The ratio between the two lot means,

for f = 1 indicates that an acceptance number, ¢, of 10 {tems will give this
ratio. The (t/u) x 100 ratio at Mo 18 (200/4,000) x 100 or 5. Entering
Table 2, the table of p', with this truncation ratio value of 5, gives a p' of
4L.88%. Reference to a table of the cumulative binomial distribution or use of
tre Poisson appro:imation for ¢ = 10 and p' = .0488 at P(A) = .10 shows that a
sample size, n, of 315 items meets the requirements. A check for this solution
can be made, if desired. For n = 315, ¢ = 10, and P(A) = .95 the Poisson
approximation indicates a p' of 1.96%, Entering Table 1, the table for per cent
truncation, with this value for p', a value for (t/u) x 100 of epproximately
2.0 is found. Solving for H 95 yields (200/u) x 100 = 2.0 or B.g5 = 10,000 which
is the desired value.
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SECTION 5
AN ADAPTATION OF THE MIL-STD-105B PLANS

5.1 Use of the 105B Plans for Life and Reliability Testing.

To permit use to be made of the familiar Military Standard 105B plans
for life and reliability testing application, the conversion factors described
in Section 2 of this report were employed to find (t/u) x 100 ratios for all
of the plans in the 105B collection. As for the basic plans described in
Section 3, separate tables have been prerared for each of a number of selected
values for B, the Weibull shape parameter. The special case for f = 1, which
is the exponential case, has been included.

The acceptance procedure will be the same as that employed for the basic
plans and as outlined in Section 1.2: (1) u random sample of n items is selected
from the lot, (2) the sample items are tested for life over some preassigned
test period length, t, (3) the number of test items failing prior to time t is
observed, (L) if the number of test items failing is no mote than some specified
acceptance number, c, the lot is accepted - if more, the lot is rejected.

Lot quality is evaluated in terms of mean item life, u. Both t and pu are
measured from some reference time or the value for the Weibull location para-

meter, 7.

The sample sizes and acceptance numbers used will be those specified by
the MIL-STD-105B tables. The procedure as outlined here is for single sampling;
through simple and appropriate modification, the 105B double-sampling and
multiple-sampling plans may be likewise employed. Example 7 in a following
subsection oi this report discusses this possibility. It may be noted that the
acceptance procedure (for any form of sampling) is the sime as that specified
for the MIL-STD-105B plans with the single exception of the use of a test
truncation time, t, (and the application, of course, to life-testing data).

As discussed in Section 2, the probability of acceptance for a lot under
the acceptance procedure outlined depends solely upon the probadbility, p', that
an item will fail before the end of the test period, t. If the test truncation
time, t, is preassigned and if the value for B, the shape parameter, is known
the probability, p', of failure is a function only of mean item life, u. This
fact makes 1t possible to use this attribute acceptance procedure to evaluate
lots in terms of mean item life; the operating characteristics for any speci-
fied plan (in terms of ¢ and n) depend only on t and u.

-19-
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It should be noted again that it is necessary to assume a value for 8,
the Weibull shepe parameter. For many applications this value may be known.
Its magnitude may have been determined for the product in question from past
life-length research data, from the results of past inspection data, or from some
other source. If the value for B is not known, procedures are available, as
outlined in Appendix B, for estimating this parameter (ani the 7 location
parameter also if this, too, is necessary).

5.2 The 105B Tables of Ratios.
Tables of ratios for adapting the 105B plans to reliability and life-
testing application have been prepared for each of seven typical values for

B. These seven values range from 1/2 to 3-1/3, coverirg the span commonly
encountered with industrial products. A table for B = 1, which is the exponential
case, is also included. These tables will be found at the end of this report
as Tables 5a through 5g.

In order to allov for any desired test-time truncation value, t, and to
make the plans available for general use, the tables have been prepared in
terms of the dimensionless ratio, t/u. Actually, to give more conveniently
usable figures and to work in terms adcpted for the 105B plans, the ratio is
given in terms of percent; (t/u) x 100 1s used. Each of the 105B plans is
cataloged and described in terms of the (t/u) x 100 ratic. These ratio values
are used in the same way as the percent defective values are used in the
selection and application of the 105B plans for ordinary attribute inspection.
When applying the plans to a specific life-testing application, use of the ratio
to convert from test time to lot mean (or vice versa) will be found quite easy.
Examples of application are giver in Section 5.3.

Each table lists for each 105B Acceptable Quality Level (AQL) value the
corresponding (t/u) x 100 ratio. These matched ratios will be found in the
column headings under each of the respective 105B Acceptable Quality Level
values (vhich are in terms of 100 p' %, the acceptadle percent defective) Each
ratio value gives for all 105B plans of the corresponding AQL, a measure of
lot quality for which the producer's risk or probability of rejection will be
low. This risk of rejection will be the same as that encountered in the normal
use or the 105B plans for attribute inspection. It will be recalled that this
1isk is not a constant value of, say .05, as in most previous tables of accept-
ance inspection plans, but ranges from as low as 0.0l to as high as 0.20. The
risk varies with the size of the sample, which in turn varies with the size of
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the lot. For large lot sizes (and thus large sample sizes) the risk is
relatively small; for small lot sizes it is relatively large. The specific

risk value far any plan of interest may be obtained from the corresponding
operating characteristic curve which will be found included with the 105B tables.

The interpretation of these matched Acceptable Quality Level ratios for
life-testing and reliability use may be demonstrated by means of a specific
case. Assume, for example, that £ = 1-2/3 and that a 105B plan with an AQL of
4L.0% 18 to be used. From the table of ratios for p = 1-2/3, which is Table 5e,
it will be found that the corresponding t/u ratio value at the AQL 1is 16.k2.
Thus lots for which (t/u) : 100 = 16.42 are "acceptable" and the probability of
acceptance will be high (the probability of rejection low). If the test period,
t, is , say, 1000 hours, (100/u) x 100 = 16.42 or p = 6,090 hours; the mran life
for the items in the lot must be 6,090 hours for it to meet the 105B acceptable
quality level standards.

In the body of each table of conversion ratios will be found for each 105B
plan ratios for which the probability of acceptance is .10. These correspond
to lot tolerance per cent defective (L1PD) figures which furnish a useful
measure of consumer's protection. They represent unsatisfectory lot quality
values and ones for which the probability of accept wice is low. Unlike the
risks associated with the AQL vhich vary with sample size, the risk at the LTPD
quality used for the tables presented here is at .10 for all plans.

For the exsmple cited above in which the AQL is 4.0%, suppose the Semple
Size Code Letter to be used is L. Reference to the table of conversion ratios
for B = 1-2/3 shows the LTPD ratio to be 31. With the test period, t, designated
as 1000 hours, the value for u, the lot mean life, may be readily determined.
Substitution gives (1000/u) x 100 = 31 or pu = 3,220 hours. Thus lots whose mean
life is 3220 hours or less have a probability of at most .10 of acceptance.

With the use of these complete tables of conversion ratios (tables Sa through
Sg), suitable 105B plans may be selected in terms of either an AQL or the LTPD
(or both, if desired). If, instead, some 105B plan has been specified, its
operating characteristics can be evaluated. Examples of such use will be out-
lined in the material that follows.

As a supplement to these tables, Table 6 has been prepared. This table
gives the (t/u) x 100 ratio at the Acceptable Quality Level for an additional
number of values for P, the Weibull shape parameter. Ratios at the AQL for the
£ values used in Table 5 are also included for convenience. As the Acceptable
Quality Level supplies the operating characteristic of most interest in the
application of 105B plans, the ratio values in this table may te all that are

~
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necessary for many applications. Ratios are given for seven additional values for P
for vhich conversion factors were available. Also included is a table, Table 7,

of the sample sizes and acceptance criteria for the Military Standard 105B plans
for single sanpling.

5.3 Exaugles of Application.

E le (7

For a simple example o. application, consider a receiving inspection
case for which incoming lots of a product are tc be tested for lifelength by
sampling. From past experience with the product it has been determined that the
life distribution can be expected to follow the Weibull form with a value for B,
the shape parameter, of approximately 1-1/3. The value for 7, the location
parapeter, 1s expected to be 0., The MIL-STD-105B plans are to be employed. A
test period for the sample items of 200 hours and an Acceptable Quality Level
in terms of percent defective (as used in the Standard) of 1.5% have been more
or less arbitrarily selected for use. The size of incoming lots is 5,000 {tems.
Inspection Level II, the one for normal use, will seemingly be appropriate.
Single sampling is to be employed. “he acceptance procedure for the above condi-
tions and the resulting operating characteristics must be determined.

Reference to Table III of MIL-STD-105B shows that for a lot size of 5,000
items and for Inspection Level II, Semple Size Code Letter M is designated for
ordinary inspection. Reference 1in next to Table IV-A of the Standard, the master
table for normal singie-sampling inspection or to Table 7 of this report. Here
{t will be found that for Sample Size Code Letter M and for an Acceptable Quality
Level of 1.5%, the sample size is 225 items, the acceptance number is & items,
and the rejection number is 9. The acceptance-rejection procedure will thus be
the following: (&) draw at rendom from the submitted lot a semple of 225 items
and place them on life test for 200 hours, (b) determine the number of items that
have failed by the end of this test period, (c) if the number failing 1s 8 or
less, accept the lot. If the number is 9 or more, reject it.

The operating characteristics of this plan can be determined from information
included in the tables of (t/u) x 100 ratios included as part of this report.

For this example reference will be to Table 54, the table of ratios for B = 1-1/3.
Examination of the two 1lines of Acceptable (Quality Level values across the top

of this table shows that for an Acceptable Quality Level in terms of p' (%) of
1.5, the Acceptable Quality Level in terms of (t/u) x 100 is 4.69. With this
latter ratio, and with the value for t, the test period length of 200 hours, the
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value for u, the mean item life for the lot, can be determined. Thus:

(t/u) 2 100 = 4.69 (AQ)

(200/u) = 100 = 4.69

u = 4,260 hours.

One now knows that the operation of the plan is such that if the mean item life
for the lot is 4,250 hours or more the probability that it will be accepted is
high. (A rough value for this probability may be found from the operating
characteristic curves in the Military Standard. For an AQL of 1.5 and for Code
Letter M one may note the probability is approximately .97.) The Acceptable
Quality Level is thus 4,260 hours.

The ability of the plan to protect the consumer may be measured by the lot
mean life for which the probability of acceptance is low. The tables of (t/u) x
100 ratios included in this report include ratios at the Lot Tolerance Percent
Defective (LTPD) quality level, the level at which the probability of acceptance
is .10. These ratios vill be found in the body of the tables. Reference to the
same table, Table 54 for f = 1-1/3, gives an LTPD ratio of 13 for Semple Size
Code Letter M and an AQL of 1.5. Computations similar to those previously made
glve:

(t/u) x 100 = 13 (LTPD)
(200/u) x 100 = 13
u = 1,540 hours.
One now knows that if the mean life for items in a submitted lot is 1,540 hours
or less, the probability of it being accepted is at most .10; the probability of
its rejection is at least .90.

The operating characteristics in hours as computed sbove apply also (with
the same values) if a double-sampling or a multiple-sampling plan for the same
Sample Size Code Letter and AQL value is employed instead of a single-sampling
Plan. For double-sampling in this application, the data for the plan will be
found in Table IV-B of the Military Standard. The first semple size vill dbe 150
items. These sample items would be tested for 200 hours. If 5 or fewer items
failed within thie time, the lot would be accepted; if 14 or more failed, it would
be rejected. If from 6 to 13 failed, a second sample of 300 items would be
selected and tested for 200 hours. If the total number failing (in the first and
second samples combined) is 13 or less, the lot would be accepted, if it is 14 or
more, the lot would be rejected.

Example (6)

For a second example, consider an acceptance-inspection by sampling




application for which the following achievements are desired: (a) If the mean
item life for the lot is 20,000 hours or more the probability of acceptance will
be high. Lots of this mean life or greater are considered "acceptable." (b) If
the meun item life for the lot 1s 6,000 hours or less, the probability of
acceptance will be low, that is .10. A test period of 500 hours will be employed.
It is expected that the item life distribution will be of the Weibull form with a
value for P, the shape parameter of 3/4. The value for the location parameter,
7, 18 zero.
The (t/u) x 100 ratio at the AQL will be

(500/20,000) x 100 or 2.5 .
The (t/u) x 100 ratio at the LTPD will be

(500/6,000) x 100 or 8.3 .
With these values, Table 5b giving the (t/u) x 100 ratios for p = 3/l may be
scanned to determine the appropriate MIL-STD-105B plan. One may note in this
table that an AQL of 6.5 (in percent defective) corresponds to a (t/u) x 100 ratio
of 2.29. This is the closest value available for the desired ratio value of
2.5. Next, the column under the 6.5 AQL value heading may be scanned to find a
close approximation tc the desired value of 8.3 for the LTPD. A value of 8.2,
vhich is reasonadbly close, 18 found corresponding to Seample Size Letter K.

Thus any MIL-STD-105B plan with Sample Size Code Letter K and with an
Acceptable Quality Level of 6.5 will give appro:imately the desired operating
characteristics for the specified test pericd of 500 hours. For single sampling,
for example, the sample size will be 110 items and the acceptance number 12 as
indicated in the MIL-STD-105B tables.

Example (9).

The procedure to be followed for cases in vhich the Weibull location
parameter, 7, is not zero but is of some other knoewn value mey be 1llustrated by
outlining a third example. The method to be followed in this case is to simply
subtract the value for 7 from the value for t, the test time, to get to, and
from p to get “o' These transformed values to and u d are then used for all
(t/u) x 100 computations. The solution obtained in terms of t, and W, can then
be converted back to original values by simply adding the value for 7 to each.

Consider, for example, an application for vhich a single-sampling plan with
n equal to 35 and ¢ equal to 1 has been specified. This corresponds to a plan
with Sample Size letter H and an AQ (in terms of p') of 1.5% in the 105B
collection. Item life is measured in terms of cycles of operation. Protection
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against lots for which the average item life is less thar 5,000 cycles is
required. From experience with this product it has been determined that the
Weibull distribution applies and that a value for 7 of 2,000 cycles and a value
for B or 2 can be expected. The problem is to determine a test time, t, in
cycles that will enable the plan to meet the above requirement for consumer's
protection. A related problem is to find vhether the plan so determined will give
adequate producer protection. It has been determined that a mean item life of
16,000 can reasonably be expected from a competent supplier.

The first step toward a solution is to convert the required lot mean life,
4 to a transformed value, My Thie nev value, Ko i8 4 - 7 or 5,000 - 2,000
vhich 1s 3,000 cycles. Next, from Table 5f vwhich gives conversion ratios for use
vhen B = 2, one finds that ;;r Sample Size Letter H and an AQL in p' (%) of 1.5,
the ratio at the LTPD Quality Level is 38 and at the AQL it 1s 13.87. Since the
plan 18 to be determined in terms of consumer's needs, the next step is to use
the LTPD ratio to determine t_ . Thus (to/uo) x 100 = 38 or (t°/3,000) x 100 = 38.
From this it is determined that to must equal 11%0. By adding the value for 7
(which is 2,000) to this latter figure, the required test time in absolute terms,
t, of 3,140 cycles is obtained.

The related question of the reasonableness of this plan for the producer
may be answered by substitution of the test time just determined in the conversion
ratio for ths AQL. The relationship is that (to/uo) x 100 = 13.87 or that
(llho/uo) x 100 = 13.87. From this a value for u  of 8,240 cycles 1s obtained.
This is then converted to original terms by the addition of the value for 7 of
2.000 cycles. This gives an Acceptable Quality Level of 10,240 cycles. Ttis is
well below the level considered reasonable so no hardship will be imposed on the
supplier.
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TABLE 1

Table of Values for Per cent Truncation, (t/u) x 100

p! Shape Parameter - f
(in %) | 1/3 1/2 1 12/3 2 212 313 4 5
| |
.010 .010 .45 1.13 2.83 7.03  11.03 17.26
| .012 012 A9 1.2h 3.0h 7.42  11.55  17.91 |
. .015 .015 .57 1.38 3.32 7.94 12.21 18.72 !
I .020 .020 NYi 1.59 3.73 8.66 13.12 19.83
.025 .02¢% .77 1.78 L.O8 _ 9.26 13.87 20.74
.030 .030 .86 1.95 L.40 9.77 1lh.52 21.5C
.0L0 040 1.02 2.26 L.93 10.65 15.60 22.77
. 065 .065 1.37 2.88 .98 12.32 17.62 25.10 |
.080 .080 1.56 3.19 6,50 13.13 18.56 26.16
.100 .10 1.78 3.57 7.11  14.03 15.62 27.36
.12 o12 1.98 3.92 7.65 14.82 20.53 28.37
.15 15 2,26 L.37 8.36 15.84 21.71 29.67
«20 «20 2:.69 5.07 9.39 17.27 23.33 31.43
.25 «25 3.08 5.64 10.27 18.47 24.68  32.87
<30 .30 3.44 6,18 11.05 19.51 25.83  34.09
oho .bO hoO? 7-1“ 12039 21.27 27076 ”012
.50 .001 .50 L.67 7.99 13.55 22.75 29.36 37.76
ok’s .002 u65 S.h6 9012 15.% 2&.62 31.3; 39081
.80 .003 .80 6.19 10.11 16, 26.21 33.03 L1.S0
1.00 .005 1.01 7.08 11.31 17.90 268.03 34.93 L3.L4O
1.2 .007 1.21 7.90 12.40 19.26 29.62 36.57 U45.02
1.5 .011 1.51 9,07 13.87 21.08 31.68 38.68 47.09
2.0 020 2.02 10.77  16.03  23.67 3u.56 L1.59 L9.90
. 2.5 .032 2.53 12,33  17.95 25.90 36.98 L4.01 52,21
| 3.0 047 3.05 13.78  19.69 27.89 39.09 L6.09 5L4.17
L.O .001 .083 L.08 16.42 22.79 31.35 L2.69 L9.59 57.45
5.0 .002 .13 5.13 18.84 25.58 34.35 L4S.71 52.50 60.13
6.5 .005 023 6.72 22,15 29,25 38.28 L49.57 56.18 63.L6
8.0 .010 o35 8.34 25.20 32.59 L1.72 52.88 59.29 66.26
10.0 «020 .56 10.54 29.01 36463 U45.82 56.73 62.85 69.LL
12 .034 .82 12.78 32.58 L40O.3L4 L49.50 60,11 65.96 72.18
15 .070 1.32 16.25 37.63  LS.UB  SL.L9  6L.60O  T70.05  75.73
20 .18 2.49 22.31 L5.51 S53.30 61.85 71.04 75.83 80.68
25 40 Lell 28.77 52.99 60.53 68.L7 76.67 80.80 8l.89
Lo 2.22 13.04 51.08 7L.79 80.64 86.15 91.09 93.27 95.22
50 5.55 2L.02 69.31 89.82 93.95 97.33 99.82 100.67 10l.21
65 19.28 65,10 104.98 115,23 115.61 11L.92 113.06 111.68 109.98
80 69.48 129.52 160.94 1LB.91 1L3.14 136.3L 128.53 12L.27 119.79
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TABLE 2

Table of Probability Values at Truncation Point, p' (%)

Shape Parameter - P
(t/u) x 100
V3 12 1 12/3 2 212 31/3 L S
010 8.09 1.LO .010
012! 8.57 1.5L .012
015 9.20 1,72 .015
020! 10.08 1,98  .020
025! 10.82 2.21  .025
|
030 11.45  2.42 .030
.0L0 12,53 2.79 .0L0
.050  13.43 3.1 +050
065 | 14.56  3.54 +065
-080 15052 3092 .080
<100 | 16.61  4e37 .10
.12 | 17.56 L4.78 012 +001
.15 | 18,78 65.33 15 .002
020 | 20.46 6.13 «20 .003
25 | 21,86 6.83 o25 +004
.30 23.% 7.1&5 030 OM
40 | 25.06 8.56 40 «009 .001
50 | 26.71 9.52 «50 «012 .002
065 28.76 10078 065 0019 .003
.80 | 30.47 11.88 .80 027 .005
1,00 | 32.40 13.19 1.00 038 +008
1.2 | 34.03 14.35 1.19 +052 o1 .001
1.5 | 36.12 15.90 1l.49 .076 ,018 «002
2.0 | 38.94 18.13 1.98 012 .031 +004
2.5 | L.22 20,04 2.47 .18 049 .007
3.0 | L3.14 21.73 2.96 o2l 071 +012 001
LeO | U628 2U4e6BL 392 39 .13 02  .002
5.0 | LB.BO 27.11 L.B8 56 +20 Ol  .003
6.5 | 50.90 30.27 6.29 .89 33 .08 .008 001
8.0 |5L.30 32.97 7.69 1l.22 50 .13 015 .003
10.0 | 56,98 36.06 9.52 1.77 .78 %3] .033 .007 .001
12 59.19 38.73 11.31  2.39 1.2 37 060 .01y «002
15 61.92 L42.17 13.93 3.5 1.75 N 13 +034 «005
20 65.45 U5.87 18.13 5.51  3.09 1.32 33 A1 02
25 68.17 50.69 22.12  7.89  L.79 2.29 69 26 06l
30 70.37 53.91 25.92 10.56  6.82 3.59 1.26 55 016 |
'.40 73.79 59012 32097 1&0!}7 11081 7023 3:25 1071 067 |
50 76,36 63.21 39.3% 22.98 17.83 11.28  6.72  L.13 2.02 |
65 79.28 68.02 L47.80 33.26 28.2h 22.32 15.37 1l.35  7.29 {
80 81.49 T1.77 55.07 L3.5L 39.51  34.59 28‘ﬁ 24.15 19.25
100 83.75 75.69 63.21 66.35 Sk.lildl S2.36 S0. 49.08 L47.93
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Table of Sampling Plans for 8 = 1/3

TABLE 3a

n

(t/u) x 100 Ratio for which P(A) = .10 (or Less)

0
100| s0| 25 | 10 $ {25 | 1 | 0.5 0.25| 0.1 | 0.05/0.025/ 0.010

0 1 2 2 3 L 5 6 8| 10| 13| 16| 21| 28

1 3 L b 6 7 8| 1 | | 17 22 | 28| 35 L7
(.05){(.02)|(.01) |

2 s S| 6 81 9 121 15| 19| 23| 31| 38 W | 65
(415)](+16)|(.08) [(.03)]|(.02) |(.01)

3 6 7 8| 10| 12| 15| 19| 24| 29 | 39| | 60| 8
(+53)[(.27){(+27)|(.07)|(.04) i(.02) (.01)

L 7 8| 10| 12| 15| 18| 23| 28| 3 | L6 | SB| 72| W97
(162)[(e66)|(e33)|(e1h)[(.06)((03)|(s01) (.01)

s 9| 10} 11| | 17 aa | 27| 33 L | sy 67 8y
(1.3)[(+80)](«54)](+20){(+20)[(+05)[(.02)[{01)(.01)

6 10, 11| 13| 26, 19| 24| 31| 37| L6 | 61| 76| 95| 128
(2.2){(1e2)[(e65)|(+28) ((+15)|(.07){(+03)[(+02)(01)

71 11| 13| 15| 18| 22 | 26| 3| L2 | s2 | 69| 8| 107 | 13
(2.6)|(1ek4){(.76)](+35)((+28)|(.20)[(.04)]|(.02)](.01)

8 13 bV 16 20 24 29 38 L7 58 76 9 | 118 141
(2.9){(1.7)1(2e2) [ (oLL) [(e23) [(oa2)](.05)](.02)]|(.0L)

9| | 16| 18| 22| 27| 32| L| 51| 63| 83103 129 176
(3.8)[(2.1){(1.2)|(.52) [(e2L)|(o23)[(.06)|(+03)((.0:)](.01)

100 15| 17| 20| 2L | 29| 35 | US| SS| T | 93| 15| W3| 19
(4:6)[(2.5)}(2.2)[(58)](28)|(oLly)|(.06)|(03)](.01)](.0O1)

n{ 6| 19 2 26| 31| 38| L8| 60| 76| 100 | 124 | 154 | 206
(5.0)] (2.8)[(1.7){(468) |(e3L)|(+26)|(+07)|(03)|(.02)[(.01)

12 18| 20| 23| 28| 33U | W | s2 | 67 82 | 108 | 133 | 165 | 220
(525)[ (3:1)| (1.7) | (.72) | (. 30) | .26) | (.07) [ (.03) | (.02) | ¢ -01) )

] 19| a| 24| 30| 36| W | 56| 71| 87| 115 | W2 | 176 235
(662)](346)[(1:9)[(76) | (4O)|(.28)](.07)](.0L)|(.02)|(.01)

W) 20| 23| 26| 32| 38| W | 60| 76| 93| 122 | 150 | 187 249
(6.7)|(3.9)[(2.1)](+85)|(.u5)|(.22)|(.09)|(.0L)|(.02)|(.0L)

15 22 2 28 3L Lo L9 63 80 98 | 129 | 159 | 197 264
(7.0)| (Le2)[(2:2) | («95) [ (oLS)|(s22)((.09)|(.0k)|(s02)|(.01)

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)
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TABLE 3b

Table of Sampling Plans for B = 1/2

n
B (t/u) x 100 Ratio for which P(A) = .10 (or less)
c
100 S0, o5 0,5 25 1 To.sj 0.25] 0.1| 0.08 0.025 0.01
of ¢ 3 Li 6] 8| 1w 17' 23| 33 } s2| 73| 103 | 165
| L (403) (s 02) (.01)
1 L 7 10| 13 18 28| o 56|88 2L 177 ' 278
 (e52) (e )2) (o16) (. 07) (+0k4) (.02) (.01)
2| s’ 9! 13| 18 | 25 39 77 | 120] 172] 2m ! 381
’ (2. 2) (o 9&) (oSL) (e 2&) (o -01) (+01)
3 9 12 17| 23 3| u9 69 9 | 153| 215 | 303 | 478
(3. 3) (1.7) (+85) (. hO) (e 21).(.10)'(-01:) (.02) (.01)
LI 9, 11 1, 20, 28 38 s9! 82 115 | 183 | 256 | 362 | 571
(L.1)(2.5) (1"‘).('60) (-BO)I(-IS)'(-Oé) (+93)(.02)|(.01)
S| 10| 13| 16| 24, 32  uS 68| 96 | 134 | 213 | 299 | L2o | 663
(6.4)](3.3)| (1-9)+(-75) (-ho)g(-19) (.08)](.04)(+02)](.01)
6| 12| W | 19 27| 37| s1| 78| 109 | 155 | 242 | 339 | u77 | 753
(7.2)|(L.7)| (2. 2) (o9L) 1 (eli6) (o24)[(+20) (.05) (.02)(.01)
70 131 16| 2| 30| W s7| 87| 122|173 | 270 3719 | 833 | AL
(947) (543)1(246) ] (141)[(+55) (+28)|(a11)|(06)|(.03)|(.01)[(.01)
| 8| ' 18| 23| 3u | U6 | 63| 96| 134 | 191 | 298 | 118 | 589 | 929
| (12) | (6.0)|(3.2)|(1.2)[(+61) ( 33) (+13) [(.07) | (.03)|(+01){(.01)
9 16 20| 26 31| s 7 | 208 | 326 | 457 | 643 |1,015
(12) [(6s4)1(3.3)((2ek) (. 73) (o 36) (1) ((.08)|(.0u)[(.01)] (.01)
‘10 17| 22 28 ’ 77 | 18 | 162 | 226 | 353 | L96 | 698 |1,101
~ (15) | (6. ems 7) G 7e) (.38)’(.15) (+08) | (.04)|(.02)[(.01)
‘11 19 ! L3, S8 83 126 | 175 | 2L | 380 | 53 | 752 {1,186
(16) (e.o),(u.l) (2.6) (. 83)|( ho)\(.lb) (.08)[(.04) (.02)](.01)
12| 20, 25| 32| L7 66 89 135 | 187 | 261 | LO7 | 572 | 805 1,271
(17) (848)((Leb6)i(1.7) (+87) (-h2):(.17) (+09) | («0L) (+02)|(o01)
13 22 27| 3 so 70 | 95 | 14l | 200 | 278 | L34 | 610 | 658 |1,355
(18) | (940)[(540)((2.9)({(+90) (olk)[(+19)]{c09)!(+05) (.02)](.0L)
w| 23, 29| 3| s3| 15|10 153 | 212 | 295 | uer | eus | s [1,436
(19) (9.2) (5.0) (2.0)| (+92) |(.47)|(.20){(+20)|(.05)(.02)((+01)| (+01)
15| 25| 31| 39 56! 79 107 | 162 | 22 | 312 | 488 | 685 | 96k |1,521
(19) {(9.4)}(5.0) (2-2)[(-98) (o49)](e21)[(e11)](«05)](+02)|(+01) (<01)

(t/u) x 100 ratios in parentheses are for P(A)
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TABLE 3c

Table of Sampling Plans for B = 1

n

(t/u) x 100 Ratio for which P(A) = .10 (or less)

100

50

25

10

5

2.5 |

1

T

O-S

0.25

0.1

0.05

0.025

0.01

3
(1.7)

S
(8.0)

2 7
(14)

3 9
(19)

L 1
(22)

13
(25)

5
(1.0)

9
(Le2)

12
(7.4)

15
(10)

19
(12)

22
(13)

10
(.51)

17
(2.1)
23
(3.7)
29
(5.0)

3
(6.2)

Lo
(7.0)

2L
(020)

Lo
(.90)

sS
(2.5)
69
(2.0)
82
(2.4)

96
(2.8)

L6
(.11)

79
(+45)
108
(+76)

13¢
(1.0)

164
(1.2)

191
(1.4)

92
(.06)

158
(.22)

216,
(038)'
271
(.50)
32k
(.61)

376
(.69)

23l
(.02)

389
(.09)

533
(+15)

669
(+20)

800
(ozh)

928
(+28)

L6l
(.01)

778
1(.05)
1,065
(.08)
1,337
(.10)
1,600
(.12)

1,855
(.14)

922

1,556
(.02)
2,129
(.04)
2,673
(.05)
3,200
(.06)

3,710
(.07)

2,303

3,89%0
(+01)

5,322
(002)

6,661
(.02)
8,000
(.02)

9,275
(.03)

L, 606
7,780

106-2
(.01)

13L-2
(.01)

160-2
(.01)

186-2
(.01

9,212
156-2
213-2
267-2
320-2

IN-2
(.01)

230-2
362-2
5322
668-2
800-2

928-2

6 ¥ I
(30)
7 16
(33)
8 18
(35)
9 20
(36)

10| 22
(38)

25
(15)

28
(16)

k)%
(1)

3
(18)

7
(19)

Lé
(7.5)

5
(8.2)
57
(9.0)

€2
(9.3)

70
(9.5)

109
(3.0)
122 |
(3-3)‘

135
(3.5)

L7
(3.7)

162
(3.9)

216
(1.5)
2l2
(1.7)

267
(1.8)

292
(1.9)

316
(2.0)

1(1.0)

Le?
(.77)

L7
(+83)

527
(+89)

576
(+94)

624

1,054
(.31)
1,178
(+30)
1,300
(+36)

1,421
(+38)

1,541
(+L0)

2,107
(.16)

2,355
(.17)
2,600
(.18)
2,842
(.19)

3,082
(.20)

4,213
(.08)

Ly 709
(.08)

5,200
(+09)

5,683
(«20)
6,163
(.10)

105-2
(+03)
118-2
(.03)
130-2
(.04)
2.2
(+04)

154=2
(+0L)

2ll-2
(.02)

235-2
(.02)

260-2
(+02)
28-2
(.02)

308-2
(002)

L21-2
(001)

L71-2
(.01)

520-2
(.01)

568-2
(.01)

616=-2
(.01)

105-3
118-3
130-3
1h2-3

15L-3

u 23
(L)

12 25
(L2)

13 27
(L2)

w| 29
(k)

15 k) |
(L)

Lo
(20)

L3
(20)

Ls
(1)

L8
(22)

51

(22)

76
(9.8)

61
(10)

86
(10)

91
(1)

97
(11)

175
(4.0)
187
(L.2)

200
(h.J)l
212
(Lok)

22l
(L.6)

kN
(2.1)

365
(2.2)
389
(2.2)

113
(2.3)

L37
(2.4)

672
(1.1)

720
(1.1)

768
(1.1)

815
(1.1)

863
(1.2)

1,660
(ol2)
1,760
(eL3)
1,896
(.L5)
2,013
(.ub)
2,130
(ols7)

3,320
(.21)

3,557
(.22)

3,792
(.22)
L,026
(+23)

L,260
(.2&)

6,640
(10)

7,113
(+1)

7,584
(«11)

8,052
(.12)

8,517
(.12)

166-2
(.0k)
178-2
(.0k)
190-2
(.05)
201-2
(.05)
213-2
(.05)

332-2
(.02)

336-2
(.02)

J79-2
(.02)

Lo3-2
(.02)

L26-2
(.02)

664-2
(.01)
T11=-2
(.01)

758-2
(.01)

805-2
(.01)

852-2
(.01)

166-3

178-3

190-3

201-3

213-3

add; for example, 154-3 = 154,000.

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)
The figure following the dash in sample sise numbers shows the nunber of seros to
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TABLE 3d
Table of Sampling Plans forf =1 2/3

(t/w) x 100 Ratio for which P(A) = .10 (or less)

[+
100 so. 25| 1s| 10 8] s| u| 2.8 1.8 1] o0.5| 0.25

3| 9| 28| 66! 129 189| 12| 5911,280(3,031 (6,061 |184-2|576-2
(9.8) |(5+0) {(2.5) {(1.5) [(1.0)|(+80) |(+50) !(+L0) | (e25)[(<15) [(+20) [(+05)|(.03)

1 6] 16 L8| 12| 220, 319/ 695| 998/2,162|5,1191102-2|311-2(973-2
(22)| (12) [(5¢9) ((345) [(23) (149)(1e2) [(+96) | (+60) (35)[(+23)|(s21)|(+06)

2 8, 22| 66| 155| 01| U437 951{1,365(2,957 (7,003 |L:0=2 [426=-2]|133=3
(31) | (16) |(8e1) [(LeB8) 1(342) (246)[(166) [(1e3)|(BL)[(oli®) [(s32)[(s26)](.08)

3] 10| 26, 83 194| 378 5LBI1,194/1,71L|3,712|8,791 176-2 53u-2|167-3
(38) | (19) [(946) |(57) [(3.8) [ (341) [(1e9) (1.5)[(+96) (o58)[(+38)|(+19)(.09)

L| 12| 33| 100| 232 LS2| 656(1,4282,050|4,LL2|105-2|210=2|640-2]|200-3
(L2) | (22) | (A1) [(6ek) [(Le3)] (3eL)|(2:1) (2e7)[(2ed)[(465) |(oLi2)|(e22)((e20)

5 W) 39 16| 269 525 761|1,657 2,379]5,153|122-2|2LL-2|742-2 232~

(L6) | (23) | (12) ;(6.9)](Le6)|(3.7)1(2.3) (19)[(1e2)](69)](.LS5) (e23)] (el
17| W4| 132| 06| 596/ 864[1,881 2,701/5,652 (139-2 277-2(8u3~2]|263-3
(7)) | (25) | (22) (7o) [(Le9)[(349) (2-5)i(2-0) (13) [(475) [ («lB) | (+25) | (.22)

19| L9| 8| 32| 666 965|2,102'3,019(6,540|155-2 |310-2|9L2-2| 29=3
(50) | (26) | (13) |(747) ((5.2){(Le2)|(246) (2,1)|(2s3) |(+78)|(s50)[(+26) (.13)

A Sk 165| 377! 17351,066/2,321 3,333|7,220|171-2 |3L2-2 |204~3| 325-3
(52) | (27) (13)|(8.1) (5+b)| (Le3) (2.7)1(2.2) (2.4) | (+80) [(+53) |(o27)] (+23)

23| 59| 181 L12| 80311,165'2,537 3,6u3(7,08931187-2 374=2 11L-3|355-3
(54) | (28) | (1) [(Be3) [(546) | (Le5)|(2.8)|(202)|(1ek)|(+BL)[(+55)[(+26)((eLk)

| 68| 196| L47| 8711,263(2,7523,951!8,560|203-2|405~2[123~3| 385-3
(57) | (28) | (1L) |(8.6)](5.7) (5.6) (209) [(2:3)1(145) [(+86)](e57) [(.29)| (o1L)

11| 26| 73| 211| LB2| 938/1,361|2,96L k4,256 9,222|218=2|437-2 133-3| 415-3
(59) | (29) | (15) [(849)|(5.9){ (LeT)|(269)({(2:3)|(2145)(89)|(+53)|(+30)] (o25)
12| 28| 78| 226| 516(1,005/1,458(3,i76(L4,560(9,879 |234=2|L66-2 |1L2-3] 1S3
(60) | (29)! (15)|(940)|(60)| (LeB)|(3:0)|(2:L) | (2e5)|(«90)|(e59) [(+30)| (o15)
13] 30 83| 2L| 550(1,072/1,55L|3,386|4,862|105-2|249=2 | 4k99=2|152=3| 475-
(61) | (29) | (15)1(941)1(661)| (be9)! (31)|(2:5)| (166) [(92)](o61){(31)| (o15)
33| 68| 256, 58L(1,138/1,650/3,595 /5,162 112-2|265-2|530-2(161-3| S05-3
(61) | (30) | (15)((903)((6e3) (5.0); (3:1)|(2:5)] (1e6) |(e9M)|(e62)}(e32)] (426)
15| 35| 931 270| 618|1,203 1,7L6|3,8035,460| 118-2|260-2|560=2|170=3 535
(62) (30>J (16) | (94)] (6eL)| (561)[(342)((246)| (26){(95)[(+63)](+32)] (.26)

|

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)

The figure following the dash in ssumple sise numbers shows the mmber of seros
to add; for exampls, 18-2 = 21,800,
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TABLE 3e
Table of Sampling Plans for P = 2

(t/u) x 100 Ratio for which P(A) = .10 (or less)
100| S0 25 15 12 10 8 5 4| 2.5 1.5 1! 0.5

3 12 L7 131| 206 296 L61|1,1521,772{4,700|128-2|288~2 |11¢=-3
K1S)[7.4) [(3.7) [(2.2) |(1.8) (1.5) [(142) | (o76) (62)|(+38)|(+23){(.16) |(.08)
| 6

(

2| 80| 223| 3uB| L99 T778(1,9LS [2,993(7,939|216-2|LB6-2 (1943
129) (25) |(7.5) |(Le5) |(3:6)1(3+0) |(2.L) | (2.5) |(1+2)|(o76) | (b6) | (.30) (.15)

! 29| 10| 305| u76| 683(1,064|2,661 |4,09]109-2|296-2|665-2 (2663
338) (19) [(9:8) |(548) [(Le7))(3¢9) {(3¢1)](2.0) [(166)]}(+98)|(+60)](eli0) ((+20)

36 138 382 597 857(1,33613,3L1 |5,140|136-2|371-2|835-2 '334=3
L3)| (22) | (11) J(647) ((Sel)| (Le5) [(346)](2.3) [(1.8)(2142)|(.70) (L7) (o2L)

L{ 13 L3| 167 uS7| 714|1,025|1,599(3,977 [6,150|163=2 [Llh=2'999=2 |40O-3
18)] (2) | (12) [(7.L) (5.9)](5.0) 1(£-0)](2.5) [(2.0)](222) |(+76) (.51) |(+26)

s| 15| so| 154! 530, 629/1,190(1,855|L,638 (7,135|189-2(515-2 116=3 L6k-3
(52)! (26) | (13) [(7.9) [(643)(5+3)[(Le2)[(2:7) |(2+2)](103) (-81):(.5h)!(:g§)

6, 17, S7| 220! 602| 9u1|1,351(2,106|5,21L [8,102|215-2(585-2/132-3 527-3
55)| (28) | (1L) ((843) [(646)| (546) [(Le5)| (2.8) [(2.3)|(2ek)|(+85) (.57) [{.29)

7| 19| 64| 2u5| 673|1,051/1,510(2,35L|5,866 |9,055 | 2L0-2 65L-2 147-3 |589-3
(58)1 (29) | (1L4) [(Be7) {(649) (5+8) {(Le6) | (2.9) I(2U){(1e5) [(+88)(.60) (.30)

8{ 2| 71| 272| 7L31,1611,6672,6006,L498 |9,997|265-2|722-2|162-3 |650-3
(60)[ (30) | (15) |(940) [(742)| (60) | (L.8)| (3.0) |(2:4)](1.5) [(+91) [(.62) |(+31)

9| 23| 77| 297| 812(1,274(1,8222,8L41(7,103 |109-2|290-2(789-2|178-3 |710-3
(62)] (30) | (15) |(9¢2) [(ToL)| (61) [(Le9)] (3e1) |(2.5)](1e5) |(e9L) | (463) [(.32)

10| 26| 87| 322| 861[1,376/1,976/3,081!7,704 119-2|31L-2 (856-2]193-3 |770-3
(62)](31) | (25) [(9eL) |(7.5)| (643) (5+0)|(3.2) |(246)](3.6) |(+96)[(+65) [(.33)

11 28| 9L 347 | 9u9(1,uB2]2,128)3,320 8,299 |128-2|339-2 922-2|207¢3 |830-3
(63) (31) | (16) (946} {(747)) (64L) |(5¢1)|(343) [(246)[(16) (9.8) [(+66) |(o3L)

30| 100| 372 ,017[1,5882,25303,556| 8,891 [137-2|363-2 |988-2|222-3 ;889-3
(6L)] (32) | (16) [(9.8) [(748)| (645)1(5¢2)| (3¢3) [(267) (1e6) [(1.0)1(+67) (o3U)

32| 207| 396,084 |1,693| 2,131| 3,792 9,479 |Lu6-2|367-2 11083 1 237-3 '9L,8-3
(68)| (32) | (16) [ €20) [(8.0)| (6.6) | (5.3)| (3. |(2.7)|(247) [(1.0) [(.68) |(.35)

| 34| 13| L21(,151(1,798]2,561|4,026| 101=2 |155=2 |411-2 [112-3 (252-3 {1014
1(66)](33) | (27) | (20) [(Bad)| (647)|(5els)| (34L) [(248) [(17) |(140) [ (469) |(435)

120 | LLS 2,217 %69(56’730 Li,258( 106-2 [164-2 |435-2 |118=3 [ 266-3 |206-4

12

13

15| 36
(67)((33) | (17) | (20) 6.8) | (5.5)] (3.5) |(2.8) [(2.7) [(2.0) [ (+70) | (36)

(t/u) x 100 ratios in pinnthosos are for P(A) = .95 (or more)

The figure following the dash in sample size numbers shows tiw number of zeros
to add; for example, 118-3 = 118,000,
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TAWBLE 3f

Table of Sampling Plans for p » 2 1/2

1}

(t/u) x 100 Ratio for which P(A) = .10 (or less)

100. 50

o

25 15
|

—

.

12 10 8

b

6.5 5

L 2.5

1.5

|

o

20

1 6 3
(37),Q28)
2 9
(L5)§(2
1,
(51)

58
(25)
70
(27)
81
(29)

3

L 13
(56)
5/ 16
(58)

L
(20) (10) |(8.7) (5.L)

| b
3)

<}

31, 100

53 170
(15)|(906)

72 233
(19)’ (12)

91| 292
(21)! (13)
109| 350
(23) | (1)
127| Lo6
(24) | (15)

|

360
(Jﬁjx

608
(5.7)

832
(7.0)
1,044/
(7.8)
1,250
(8.5)
1,450
(9.0)

RS

€23 1,002/1,772
(246) 1 (2+2)] (147)

1,052 1,692!2,993)
(Le6) (3.8)](3.0)

1,439, 2,314/ 4,09k
(5:6) (ha7)| (3.7)

1,606 2,905 5,1L0
(6.3)| (5.2)| (hs2)
6,150

2,161 3,476
(648)1(5.6)' (L4e5)
7,135

2,507 4,033
(&.7)

2,879
(1)

L,863

5,018
(1.1)
9,468
(2.5) 1 (1.9)
6,653|130-2
(3.1) (2.3)
d,352|163-2
(3.h)|(2-6)
9,993 195=2
(3.7) (2.8)

116-2| 226=2
(3.9) (3.0)|

9,596
(.88)
162-2
(1.5)
222-2
(1.9)
278-2
(2.1)

333=-2
(2.3)
386-2
(2.4)

320-2
(+55)

SLO-2
(.96)

739-2
(1.2)
928-2
(1.3)
11-3
(1.4)
129-3
(1.5)

15-3
(+33)
194-3
(58)
266-3
(+71)

334-3
(+80)

400=3
(86)
LéL=3
(+91)

i
6, 18 92
(61) | (30)
7, 20 103

(64) ()

22| 113
(66)] (32)

25 124
(67)] (32)

27 137
(68) (33)

k| 6O
(25) | (16)
163| 51§
(25) | (16)
180| 568
(26) | (17)

197 624
(27) | (17)

akL| 673
(21 | (7)

1,646
(9.4)
1,840
(9.7)
2,031
(10)
2,220
(10)

2,L08
(10)

(73?)l(6192
z,su7|u.sao 8,102
(1.5) (642) (Le9)

3,18215,118'9,055
(7.7) (6ek) (501)

3,513/5,650 9,997
(8.0)! (646) (5+2)
3,8b0i6,177;109-2
(8+1) (6+7)! (543)
L,164 6.699‘119-2
(843) (6.8)i(54k)

132-2|257-2
(L.1)|(3.1)
147-2| 287-2
(be2)| (3.2)
162-2(317-2
(Le3) (343)
1768-2| 346-2
(Leb)| (3.4)
193-2]376=2
(Le5) ! (3L)

L39-2
(2.5)

L90=-2
(2.6)
5l1-2
(2.7)
592-2
(2.7)

6L2-2
(2.8)

146-3
(1.6)

163-3
(1.6)

180-3
(2.6)
197=3
(1.7)
21kL-3
(1.7)

527-3
(+5L)

589-3
(+97)

650-3
(1.0)

110-3
(1.0)

770-3
(1.0)

29/ 148
(69) (33)
31 158
(70)'(3h)

(12)] (3b)

35 179
(12)| (35)
37| 189
(73)] (36)

33 168

230 | 725
(28) | (18)

u6| MM
(28) | (28)

263 | 828
(29) | (18)

2719 | 8719
(29) (28)
295 | 930
(29)| (19)

2,594
(1)
2,779
(11)

2,963
(1)

'3,1U5
(11)

3,327
| (1)

|
h,h86;7,217[128-2
(8eL) (7.0) (5.5)

h.806f7,732E137-2
(846) (7.1)! (546)

5,124 8,2U3| 1L6-2
(8.7)! (7.1)](5.7)

5,LL0| 8,752|155-2
(8.8) (7.2) | (5.8)
5 755'9,258v16h-2
( 'G)J(7°3)l(5°8)

207-2| LO5-2
(Le6) | (305)
222421 3L=2
(4.6)| (3.5)
237-2| L62-2
(Le7)| (3.6)

252-2 i91-2
(h.7)i(3.6)
266-2| 519=2
(Le8)| (3.7)

692-2
(2.8)

W1-2
(2.9)

790-2
(2.9)

839-2
(2.9)
887-2
(3.0)

231-3
(1.7)
2L47-3
(1.8)
263-3
(1.8)

280-3
(108)

830-3
(1e1)
889-3
(1.1)
948-3
(1.1)
101-4
(1.1)

296=3| 106=4

(1.8)

(1.1)

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)

The figure following the dash in sample size rumbers shows the number of

seros to add; for example, 296-3 = 296,000,

-33-




TABLe 38

Table of Sampling Plans for f = 3 1/3

n

(t/u) x 100 Ratio for which P(A) = .10 (or less)

1ool 65

50

W 3

25

20 15

12 10

8| 6.5

5

|

1N
(30){ (21)

T
(L) | (32)
33
(37)

42
(LO)
3
(42)

59
| (k)

9
(56)
12
(60)
W
(65)
16
68)

T
(16)

57
(2u)
78
|(28)
.98

n7
(33)

136
(34)

(31)

70
(13)

19
(29)

164 |
(23) |
206
(25)
b
(26)

286
(27)

183
(9.6)

33
(8.0)

S64
(12)

172

309
(1k)
h23|
(17): (1)
531 969
(19), (18)
635 i 1,159
(20)| (16)
737i1,3h5
(21)4 (17)

698 '1,71.
(6.4) (L.8)

1.179i2’993
(9.8) [(7.k)
1,613 |h,09h
(11) 1(8.7)
2,025 !5.1110
(12)1(9.4)
2,423 !6,150
(13)] (20)

81117(135

2
flb)i 10)

3,839
(3.8)

6,uBL

16,979
(3.2)
118-2
(5.8) |(L.8)
8,870(161-2
(6.8) |(5.7)
111-2202-2
(7.5)|(6.2)
133-2|2l2-2
(i.9)1(646)
1. 2/261-2
(8.2)(6.8)

288-2
(2.1)

LB6-2
(3.2)

665=2

149-2
(2.5)
251-2
1(3.9)
502
(LeS) 1 (3.7)
L31-2|835-2
(14e9) | (120)
5162 [999=2
(5¢2){(L.3)
5982 (116-3
(5.4)|(L.b)

698-2
(1.6)

118-3
(2.4)
161-3
(2.8)
202-3
(3.1)
242-3
(33)
281-3
(3.4)

10

67
(46)
75
(L7)

83
(47)

19
(69)

21
(n)

23
(73)
26
(74)

28
(75)

90
(u8)
101
(u8)

157
(35)
' 176
| (36)
194
(36)

212
(37)

230
(38)

325
(28)

363
(29)
400
(29)

L38
(30)

L75
(30)

1,032
1,178

1,228

836/1,527
(a)| (a7n)

935!1,698
(22), (18)

1,884
(18)

2,059
(19)

2,233
(23), (29)

(22)

(22)

|
3,19218,102

()| (1))

19,055
(n)

9,997
(1)

109-2
()

119-2
(12)

3,567
(14)

3,938
(15)

L, 305
(15)
L,669
(15)

17€-2
(Beh)

196-2
(8.7)

el7-2
(8.8)

237-2
(9.0)
257-2
(9.2)

3192
(7.0)

357-2
(7.2)

39L-2
(7.4)

L30-2
(7.5)

Lé7-2
(7.6)

679-21132-3
(S6) | (L6)

759-2|147-3
(548) (ko)
838-2162-3
(5.9)|(4.8)

917-2|176-3
(6.0) [(L.9)

994=2(193-3
(6+0) 1(L.9)

319-3
(3.5)
357-3
(346)
394-3
(37)
L30-3
(3.7)
L67-3
(3.8)

12
13
14

15

108
(49)

116
(L9)

30
(76)
32
(1)

124
(50)
131
(50)

139
(51)

35
(77)

37
(78)

39
(79)

2u7
(38)
265
(39)

283
(39)

300| 620

(39)

317
(LO)

i
|

|

511
(31)

Su8
(31)

584
(31)

(32)

656
(32)

1,318

1,6”

2,406

(23)| (19)

1,412{2,578

(23), (20)

13505|2’7h8

(24), (20)

1,598 2,918, 6,100
(20)! (16)
3,086, 6,453
(20)) (16)l
| )

(2b)

(2L)

5,030|128-2:
(15)| (12)|
5,389  137-2]
(1) (22)

S, TUS|1L6-2
(16)| (12)

155-2
(12)

164-2
(12)

277-2
(9:3)|
296-2
(9.4)
316-2
(9.L)

335-2
(9.5)

355-2
(946)

503-2
(7.7)

539-2
(7.8)

57U-2
(7.9)

610-2
(8.0)

|6LS=2
(8.0)

|207-3/207-3
(6'1)9(500)
115-3 222-3
(6+2)(5.0)
122-31237-3
(6.2)1(5.1)
130-31252-3
(6'3) (502)
137-3 | 266-3
(64L)|(5.2)

£03-3
(3.8)
539-3
(3.9)
STl=3
(3+9)
610-3
(3.9)
6LS-3
(LO)

“2/4) x 100 ratios in parentheses are for P(A) = .95 (or more)

The figure following the dash in sample size numbers shows the number of
geros to add; for example, 319-3 = 319,000.
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TARLE 3h
™ Table of bampling Plans for 8 = 4

n

(t/u) x 100 Ratio for which P(A) = .10 (or less)

| pres e e T | T . '
100 80 65L 50 hO 30 25l 20' 15; 12. 10 81 6.5
g ‘[ .- &
0 9| 20 I 55 1310]' L9 886'2 ,09 6, 7711 164=2 329=2 768-2 177-3
(37) (30) (25) 1 (29)| (15)| (12)|(9.L) |(7. 6),(5 8) (1e7) (5.0)1(3.2) (246)
1| 7 33 93| 228" 708|1,L97|3,537, L1k-2 278-2 556-2(130-3(299-3

(53) (hh) (36) (1) (22) (16)] (W) (11)! (8.0) (6.5)' 1(546) |(LeS) | (37)

2| 9l 22 w61 128 32, 968 2 om'u 839 157-2 380=2 760-2|177-3|L09-3
(62) | (50) (L0) | (31)| (25). (39)] (16)! (12){(9+2) (7.L) (6+2){(541)](L.2)

3 12| 26 5710162 391’1 215/2,570/6,074] 197-2 L77-2 95L=2|223-3: 5143
(66) | (Sh) (L) (33), (27), (20} (17) 1(13) | (20).(749) (646)|(5.5), (L 5)

4 18 | . 69 194! L68 1,454 3,075(7,268 235-2 571-2 11U4-3|266=3(615-3
(68) (56) (L) | (35) | (28), <21>| (18) | (1) (10) (8.3) (7.0) |(5.8)" (ks7)
s| 17 80 225| 543 1 687 3,56818,432 273-2 663-2'133-3309-3'713-3

(71) (58) l (L8) | (36) (29) (22) (18) (15) (11) (8. 6) (72){(640) | (L.9)
6| 19 uz‘ 91| 255| 616 1,915|4,051!9,575 I 110-2'752-2 150-3351-3| 810-3
(76) | (59) i (L9) | (37) | (30) (22) (19)! (15)| (11)](8+8) ! (74k)[(641)](5.0)

- 7| 22 L7 102 | 286| 689 2,140|L4,528 107-2}346-2| Bu1-2 168-31392-3|905-3
NS (75) | (60) | (50) | (38)| (30)| (23)| (19)! (15)| (11) (9.0) (7.6) (6.2)(Se1)

8| au 52' 112 | 315! 760|2,363| k4,998 118-2| 382-2| 9282 ' 186-3|433-3' 100-4
(76) | (61) | (50) [(39)| (30)] (23) (19)| (15)| (12) (9.1)5(7.7) (63) (5.2)

9| 27 571 123 | 344| 831/2,563|5,L46kL]129-2|416~2| 101-3 1 203=3 474=3 109=Y
(77) | (62) | (51) | (39)| (31)] (23)] (20)| (16)| (12)!(9. 2)~(7 .8) | (6.3){(5.3)

10 29 64| 136 | 373 901|2,802(5,926|140=2|453=2| 110=3 220-3 SUs-3|119=4
(78) | (62) | (51) | (k0)| (32 {au)| (20)| (16)] (12)!(9.4)! (7 8) [(6.L) | (5.3)
11| 31 69| 147 | LO2| 971|3,018(6,38L(151-2 L488-2{119=3 237-3 553-3[128-y

(719) | (63) | (52) | (40)| (32)] (2u)| (20)| (16)] (12)|(9e)!(7+9)|(60L)]|(50k)

12 33| 74| 157, L31|1,0L0|3,233|6,840|162-2|523-2 127-3'25&-3 593-3/137-4
(80) | (63) | (52) | (L0)  (32)| (2b)i (20))(26) | (12)|(9.5) (8.0) (645)|(Sali)

13| 36| 79| 167| L60[1,109|3,LL7|7,292(172-2|5568-2| 135-3 | 2713 |632-3| Lu6=U
(81) | (6k) | (53) [ (L2)| (33)) (2L): (20)| (16)] (12)] (9.6) | (8.1} |(6.5)] (5.5)

1| 38 84| 178 | LB8(1,177| 3,660| 7,7u42[183=2{592=2 1hb-3 288-3|671-3|155=4
(82) | (64) | (53) [ )| (33) (25)| (21)| 7| (22)] (9. 7)|(8.2) (6.6) | (5.5)

15| Lo| 89| 188 516|1,2u6|3,872| 8,190|194=2]|626-2| 152-3 " 304=3|720=3] 164=L
(82) | (6L) | (53) [ (W1)| (33)| (25) ()| (17){ (12) (9-8)'1(8-2) (646)](5+6)

l - B

(t/u) x 100 retios in parentheses are for P(A) = .95 (or more)

The figure following the dash in sample size mmbers shows the number of
gseros to add; for example, 3OL-3 = 304,000,

Q -35-
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TABL. 38

Table of Sampling Plans for

p=31/3

n

(t/u) x 100 Ratio for which P(A) =

«10 (or less)

100 i 65

™

50

L' 30

25|

20 15

12 10 8

6.5 S

|
Lo
(30) | (22)

7 2l
(u6) | (32)

33
(37)

9
(56)
12
(60) (L0)

U/
(65)

.

51
(42)
S9
(LL)

b2 |

34
(16)

7
(2b)
78
(28)

98
(31)
n7
(33)

136
(3L)

70
(13)

19
(19)

(23)
206
(25)
2L6
(26)

286
(27)

164 | h23l

183
(9.6)

334
(8.0)

564
(12)

772
(1:) (14)

531 969
(19), (15)

635/1,1592
(20), (16)

7371 3us
(21)J 17

309
(lh)|

698'1,772
(6.4). (b 8)

1,179 2 993
(9.8)'(7.h)
1,613 |L,09
(11)1(8.7)
2,025 5,100 111
(12) 1 (3.4)
2,l23/6,150
(13)| (20)
2,81117,135
)y (

10) |

149-2
(2.5)
251-2
(3.9)
343-2
(L.5)
h31-2|
(Le9),
516-2 |
(5.2)
598-2
(S.k)

3,839:6,979
(3.8) (3 2)

6 hBh,llB-Z
(5.8) (L.8)

8,870 |161-2
(6.8) [(5.7)

-2|202-2
(7.5)(6.2)

133-2 2l42-2
(7.9) | (6.6)

155-2|281-2

698-2
(1.6)

118-3
(2.4)

161-3
'(2.8)
202-3
(3.1)
2L2-3
(3.3)

261-3
(3.4)

268-2
(2.1)
LB6-2
(3.2)

665=2
1(3.7)
835-2
(4.0)
999-2
(4.3)
116-3
(Lok)

(8.2)[(6.8)

10

67 |

19 |
| (48)

(69) |
2
(71)
23
(73
26
(74)

28
(75)

(h?)
(h7)

90
(L8)

101
(u8)

75

157
'(35)
176
| (36)

194
(36)

212
(37)

230
(38)

325
(28)

363
(29)
400
(29)

L38
(30)

L75
(30)

12
13
14

15

108
(49)

116
| (L9)

30
(76)
32
(77)

35| 12
(77) | (50)
131
(50)

139
(51)

37
(78)

39
(79)

o7
(38)

265
(39)

283

(39)
317

3°°|

(Lo)
|

s11
(31)

Sus
(31)

620
(32)

656
(32)

(23)]

836|1,527
(e1), (17)

9351,698
(22)| (18)

1,032(1,88Y
(22)| (18)

1,128(2,059
(22)] (19)

1,228(2,233
(29)

,192!8 102
()| (1)

3,567|9,055 11962
()|

(L) |

3,936
(15)

9,991
(n)

L,305/109-2
(1) (1)
L,669/119-2
(18)| (12)

679-2
(546)
759-2
(548)
8362
(5.9)
917-2
(6.0)

176-2
(8.4)

319-2
(7.0)

357=2
(8.7) (7.2)I

217-2,39“-2
(8.8) (7.4)

237-2|L30-2
(9.0)1(7.5)

257-2|467-2|99L-2

(9+2) | (7.6) | (6.0)

132-3/319-3

(Le6) | (345)
147-3|357-3
(Le7)|(346)
16¢-3(35u-3
(L.8)|(3.7)

1768-3|430-3
(Le9)|(3.7)

193-3|467-3
(L.9){(3.8)

2,406
(19)

1,l12,2,578
(23)| (20)

.505|2 7h8

1,318
(23)

(39) (31)' (2h) (20)

1 598 2,918,
(20)! (16)

(24)|

1,690
(2k)

3,086

(20)| (16)

5,030/ 128-2
(15)1 (12)

5,389, 137-2

(15)| (12)

5,7US | Lb=-2
(16)| (12)

155-2
(12)

164-2
(12)

6,100/

6,453

|
i

277-2 503-2|1o7-3}
(9.3) (7.7)i(6.1);
296-2 539-2,115-3
(9.4)[(7.8) | (642)
316-2 |57h-2|122-3
335-2/610-2/130-3
(9.5) 1 (8.0)|(6+3)

355-2 |6L5-2|137-3
(946) |(8.0)[(6eL)

207-3/503-3
(5.0) | (3.8)

222-3|539-3
(5.0)[(3.9)

237-3|57L=3
(5.1)[(3+9)
252-3610-3
(5.2)(3.9)
266-3|645-3
(5.2)] (L.O)

(t/u) x 100 ratios in parontholea are for P(A) =

+95 (or more)

The figure following the dash in sample size numbers shows the number of
zeros to add; for example, 319-3 = 319,000
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TABLE 3h

Table of Lampling Plans for 8 e |

n

(t/u) x 100 Ratio for which P(A) e ,10 (or less)

=

100

807

—

651 so]

)
Lo, 30

25
!

20A

t—

15

S

——

12 10

8' 6.5
|

L
(37)

7
(53)

9
(62)
12 |
(66) |

15 |
(68)

17
(11)

9
(30)

15
(LL)

21
(50)

26
(54)

1.

(56)

n
(58)

| (18)

(25) | (19) |
3 93
(36)  (27)
46 | 128,
(4Lo) | (31) |
57| 162
(W) . (33)
69 194
(W) | (38)
80 | 225
(36) |

13&5 L19|
(15 (2)
228' 708

312,
(25)° (19)]

391'1,215 2,570 6,074
(1), (20)‘(17) (13)

L68. 1,454

(28) (1) (18), (1)

543 1,687
(29)| (22)

|

i

886

(16)

3,075|

3,568
(18)

2,094 6,77L 1642 329=2
(944) (7.6);(5.8) (Le7) (L.0)

" 708/1,L97 3,537 11L-2 278-2 5562
@) 6)) ) “(11) (8.0) (6.5) (5.6)

968 2,047 4,8391157-2 380=-2 760-2

(12)

7,268

8,432

(15), (11) (8.6} (7:2)

(9.2)

(7.4) (6.2)

768-2/177-3
(342) (246)
130-3 ! 299-3
(LeS) | (347)
177-3(L09-3
(5¢1) | (Le2)

197-2 L77-2 95L=2223-3:51L~3

i (10) (7.9) (6+6)

235-2

(10),

273=-2

571-2 114-3
(83) (7.0)

663-2 133-3

(5.5)](LeS)
266-3/615-3
(5.8)' (Le7)
309-3'713-3
(640) | (La9)

10

19
(74)

22
(75)

2l
(76)

27
(7

29
(78)

2|

(59)

L7
(60)

52
(61)

57
(62)

64
(62)

91 | 255
- (L9) | (37)

102 | 286
, (50) | (38)

02| 3s
| (50) | (39)

123 | 3L4
(51) | (39)

136 | 373
(51) | (LO)

616'1(915

(30); 22)

689'2,1h0
(30)! (23)
760! 2,363
(31)| (23)
831, 2,583
(31)| (23)
9ql | 2,802
(32)| (ab)

4,051
(19)’

4,528
(19)

k4,998
(19)

5,64
(2v)

5,926
(20)

9,575 310=2' 752<2.150=3
(1)

(15)
107-2
(15)
118-2
(15)
129-2
(16)

140-2
(16)

346-2
(1)
382-2
(12)

L18-2
(12)

L53-2
(12)

(8.8) (7.L)

8l41-2  168-3
(9.0) (7.6)
928-2'186-3
(9.1)(7.7)
101-3 203=3
(9.2);(7.8)
110-3 2203
(9.h);(7.e)

351-3| 810-3
(6.1)(5.0)
392+3{905-3
(6.2)| (5.1)
1333/ 100-4
(6.3) (5.2)

L74=-3 109-4
(6.3){(5.3)

Sli=3|119-4
(6.4)|(543)

12

13

15

3
(79)

33
(80)

36
(61)
38
(82)

Lo
(82)

69
(63)
("
(63)

19
(6b)
8y
(64)

89
(6k)

147 | Lo2
(52) | (LO)

157 L
(52) | (LO)

167 | L6O
(53) | (L2)

178 [ L68
(53) | (L2)

188 [ 516
(53) | (L)

971
(32)
1,040
(32)
1,109
(33)
1,177
(33)
1,2U6
(33)

3,018
(24)

3,233
(2k)

3,LL7
(2L)'

3,660
(25)

3,872
(25)

6,384
(20)

6,840
(20)

7,292
(20)

7,742
(21)

8,190
(21)

151-2
(16)
162-2
(16)
172-2
(16)
1583-2
(17)

194-2
(17)

L88-2
(12)

523-2
(12)

558-2
(12)

592-2
(12)

626-2
(12)

119-3'237-3
(9.4)!(7.9)

127-3!25&-3
(9.5).(8.0)

135-3'271-3
(9+6)(8.1)

1L),-3, 2883
(9-7)‘(802)

152-3 304-3

(9.8){(8.2)

553-3]128-Y
(60&) (SOh)

$93-3(137-4
(6.5)] (544)

632-3| 1L6-4
(6+5)](545)

671-3 155-4
(6:6)((5.5)

710=3| 164-4
(646)1(546)

seros to add; for example, 30L-3 = 304,000,

(t/u) x 100 retios in parentheses are for P(A) = .95 (or more)

The figure following the dash in sample size mmbers shows the number of
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TABLE 3!
Table of Sampling Plans for p = §

n

(t/u) x 100 Ratio for which P(A) = .10 (or leus)

100 80

65]

T
50l

LS Lo 35

30| 25

2

15

-

12

10

L
(hb) (37)
P19

(53) (L9)

10

26
(68) (55)

33
(73) (58)

15 F Lo
(76) | (60)

17| Wb
(78) | (62) |

20| 53
(79) | (63)

22 59
(80) | (6k)
25| 66
(81) 1 (65)
27 72
(62) | (66)

3o/ 8
(83) | (68) |

13

15

32 8
(8L) | (66)

a9
(8u) | (67)

N9
(85) (67)

39 105
(85) | (68)
Ll 1m
(86) | (68)

I\

SOy

31|
(30) |
!

53!
(ho)

(hS)

(h?)

108
(L9)

125
| (51)

143
(52)

162
(52)

179
(53)

195
(k)

212
| (54)

oz

n3
(23)

193

(31) |
264

(3b)

3
(36)

3%¢
(38)

Ls0o
(39)

678
(16)

1,18 2
(22)

1,566
(2L)
1,965
(25)

192 3
(1) ' (19)

3¢5 5611
(28) (25)

Ll 795
(31) | (27)

5571 998
(33)| (29)

667
(3h)|

173
(35)

(26)
2,728

(30)
1,365

522
(40)

583
(LO)

6LL| 1,083

(42)

70l
(L)

763
(L)

878
(36)
931
(36)

1,572 3,098
(32)] (28)

1,757|3,463
(32)] (28)

1,%40(3,823
(33)] (29)!

1,184 '2,121(4,279
(1) (33)] (29)

1,284|2,300 4,532
(37)] (33)] (29)

(37)

1,194(2,352( 4,997

1

1,kL0
(1L)

,uaa
(19)

3,327
()

4,176
(22)

(12) | (9.4)
6,079 185-2
(15)| (12)
8,316 253-2
(17)} (1)
104-2| 318-2
(18)| (1L)
125-2/ 361-2

2 (19)' (15)

5,197 | 1h5-2 Luz-2

), (21) (23)5 (19), (15)
1

5, 553'L55-2'5c3-z
(Zb) (20) (16)
(Zh)i (20)| (19)

8,122| 203-2/ 619-2
(25) (20)' (16)

6,879 222-2| 6762

(25)} (20)! (16)

9,630| 2L1-2| 734=2
(25) (21)| 1)

3,599/ 110-2| L61-2

(7.0)

778-2
(9.2)
106-3
(10)
134-3
(1)

160-3
(1)

166-3
_a2)]
Ell-J

(12)

235-3
(12)
260-3
(12)
28L-3
(12)
308-3
(12)

135-3
(5.6)

229=3
(7.5)

313-3
(8+3)

393-3
(8.8)

L470-3
(9.1)

5u6-3
(9+4)

620+<3
(9+6)
692-3
(9.7)
76L-3
(9.8)

836-3
(10)

906~3
(10)

329-3
(4.8)
556-3
(643)
760-3
(7.0)
954=3
(7.4)

-4
(7.6)

132-Y
(7.8)
150-k
(8. 0)
168-U
(8.1)
187-4
(8.2)
203-4
(8.3)
220-Y
(8.!&)

228
(55)

2Ly
(SS)I

261
(55)

217
(56)

293
(56)

822
(L2)

861
(L2)

939]1
(42)

997|1,678

(43)

1,055
(L3)

1,3842,478|L,882
(38)] (3u)| (29)

1,u82!2,65515,230
(38) (3u){ (30)

830/5,576
€3u>| (30)

3, 005 5,720
(3h)| (30)

3, 178]6 ,263

Z;e)

(39)

1,775

(39)| (35)| (30)

104-2| 259-2! 790-2
(25)| (a)| (17)
111-2(278-2] 847-2
(25)| (21)| (17)
118-2| 296-2| 903-2
(26)I (a); (1n)
126-2: 32| 958-2
(26)| (21)| (17)

133-2|33)-2/101-3
(26)) (1) (17)

332-3
(13)
356-3
(13)
379-3
(13)
403-3
(13)
426-3
(13)

976-3
(10)
105-4
(10)

12-4
(20)

18-4
(10)

125-4
(10)

237-4
(8.5)

25L-b
(8.6)

2=y
(8.6)

288-4
(8.6)
304-4
(8.7)

(t/k) x 100 ratios in ptronﬁhosoa are fbr P(A) » .95 (or more)

The figure following the dash in sample size numbers shows ths number of
seros to add; for example, 203-2 = 20,300.
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TABLE 5b

Table of (t/u)x100 Ratios for £ = 3/4 for the 105B Plans

ol R
S‘ s JUp— o ';\“‘.‘ s
Q 324 K[ 831y |go@ =¥
-
of & QuR 4y N
ol |77 4 95’ ““““““““ ‘.'8?’\: YYY O VONn Fm
el ~ e e 9 2 Q@ S4VN A
Lt ) o~ 9\ ’u_? :1 O\~ VNSt M NN
75 63 NOO M ™ e~ ~m
. . D e " ) L T = Y . » . . . . 3 . . .
N ~ 0=\ < NN QN ~ -
| nm 20A ow2r o
. S el P S-S . . . . . . . . . .
-t 2‘ =t 2 MNMNN 4 ~4
o 9- e verenensenseersnssmvssses eassbnscocennen D (n. Lo —— ] CD. u.\ q (T (\:l '-.l 8 bm.- V'-‘.\
) 0 N NN A ~ e~
3 i e O M QRGN @
d [1a] ~ ot~ ~4
T
9' o ., = (\'J"‘“ e &&. g\:&?; %n.
o o~

Acceptable Quality Level (AQL)
0.25

:

[y g]

3

T
4 9 B BRB KT
ol =&

~

bt

' e u\§
A 3 ~3—8y 93
ol 3

o
§ < S P :1~§
ol §

=4
o o e
0. 3 .......................... L, _'_.‘...--.-—QO.O.
o
"D
13 |- —~g-—8
(o] BN v

\O
:5 §§ [OT' = (V)d) T9A¥1 A37Temd QdIT 3% 00TX(7/3)
A ~ X

193397 9pO)
o315 oTdmeg <MU AR OEH HX2 XmO A&Q

-39-

Lova e o



-—

TABLE 5c

Table of (t/u) x 100 Ratios for 8 = 1 for the 105B Plans
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APPENDIX A

The Weibull Distribution as a Failure Distribution

This appendix describes the Weibuil distribution which is used as a
mathematical model for the procedures described in this report. The Weibull
distribution is a member of the general feilure distribution which can be
derived as follows:

Let N = the initial number of items under life testing.
S(x) the number of items still surviving at time x.
R(x) = S(x)/N = the proportion of items still surviving at time x.
F(x) = 1 - R(x) = the proportion of failures prior to time x.

Z(x) = the instantaneous rate of failure at time x.
7 = An assumed time, prior to which no failure will occur.

The introduction of 7, some finite time, means when x § 7; S(x) = N, R(x) =1,
F(x) = 2(x) = 0 which is & boundary condition. A negative value for 7 means
thav the items could fail prior to life-testing, i.e., the items could fail in
storage, a common phenomenon for batteries, electrolytic capacitors, electron
tubes and the like.

The following simple differential equation equates the decrement of items
surviving in some small increment of time dx with the product of S(x) and Z(x).
The negative sign indicates the decrement.

as(x)/ax = -z(x) * s(x) (A1)
Divide both sides by n and transpose,

dR(x)/R(x) = -2(x) dx (A 2)
Nov integrate both sides over the interval ( 7, x },

X X
1n R(y) '7 =- [ 2Zy)dy+C (A 3)
7

The integration constant C is zero, because of the boundary condition of
R(x) = 1 and Z(x) =0, for x 5 7

Hence,

nR(x) = - [ 2(y) & (A b)
Y .

e e X



vhich can be rewritten as

F(X)-I-B(x)-l-exp[-fo(y)dy]-l-exp[-M(x) ] for x 2 7,
4

=0, for x< 7. (A 5)

This {s the form that a failure distribution must take. Since Z(x) is non-
negative for all x, in order tor F(x) to have meaning, M(x) must be non-
decreasing in x. Although there are still infinitely many choices of M(x),
this form of distribution rules out many other distributions, for exsmple the
normal distribution, as a failure distribution.

If the instantaneous failure rate, Z(x) is a constant over time say equal

X
to M\, then M(x) = | \'dy = A(x-7), for x > 7, and M(x) = O for x & 7.
7

The resulting distribution is the well-known 2-parameter exponential distridutioce

namely for X\ = 1/6,
F(x) =1-exp ~(x-7)/0 ), forxz 7, 6>0,

=0, othervise. (A 6)

Hovever, if the instantaneous failure rate changes with time in such a way that
(x-7)P
M =
(x) =

for x > 7 and M(x) = O for x $ 7, the resulting distribution

will be the following:

F(x) =1 - exp ( -(x-7)a/a }],torxa7,a, >0,

= 0, otherwvise. (A7)

This form of the failure distribution is kmown as the Weidbull distri-
bution. The three parameters of the Weibull distridution are,
@ ~ the "scale" parameter
B - the shape perameter
7 - the location parameter
Often the Weibull distribution is wvritten as,

B
P(x)'l-exP['(x;7)],forxi7, n B>0,

-0, otherwise, (a 8)
-48-
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1/p
Then n = O = ab, is the true scale parameter (n is also known as the

characteristic 1ife). Note that for the special case vhen f = 1, the Weibul.
distribution (EqQ. AT or A8) reduces to the 2-parameter exponential distribution

(Eq. A5).
The first derivative of Eq. A8 with respect to x gives the Weibull density

function,

f(x) = 2 (EL) e [ x:,’)al.rorxir. n B >0,
”

=0, othervise. (A 9)

The instantaneous failure rate, Z(x) for the Weibull case is
d M(x)/dx = ﬂ(x-?)a"l/f:a vhich 1s a decreasing (increasing) function in (x-7)
12 <1 (p>1) and a constant equal to 1/n if B = 1, 1.e., the exponential
case. A plot for f(x) vs (x-7) is shown in Figure 1 for n = 1 and for several
values of B, the Weibull shape parameter.

The variable X may be standardized by introducing the relationship
Y = (X-7)/n . Then the Weibull cumulative distribution function (c.d.f.) and

the corresponding probability density function (p.4.f.) of Y are the following:

G(y)-l-exp[-yﬂ],fory)O,B)O,

=0, otherwise. (A 120)

gy) =By e (P 1, tr y>0, 850,
=0, othervise. (A11)

These are known as the standard Weibull distributions. Since Figure 1 shovs
f(x) vs (x-7) for n = 1, the figure also represents g(y) for the same cet of
f values.

In order to find the moments of X it is sufficient to calculate the

h

moments of Y. The kt moment of Y about zero is

BYE . [ y% p B e'yady - /Bt gy (k + 1) (A 12)
(o] 0
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From this expression all mcments of X may be found. The following are the
mean, standard deviation and skewness of X, for b = 1/,

Be 74+ 0q{bel) (A 13)
o= o[ n(2b+1) - I2(tn1) 15 (A 1%)
@y [ T(3041) -3 N(2b41) T(be1) + 2r3(v+1) /o3 (A 15)

These relationships shov that the standard deviations, o, and a3, are free
of 7, and the mean, u, contains a linear term of 7.

In the case for which 7 i{s known, the variable (X-7) will behave in
accordance vith a Weibull distribution of the form given by EqQ. A 16 which
corresponds to Eq. A 8 with the value of 7 equal to zero. Hence, for this
report vhere 7 is assumed to be known, only the following expressions Eqs.

A 16 & A 17 will be referred to as Weibull distributions:

P(x) =1-expl -(x/n)B] ,for x20,n, >0

=0, othervise. (A 16)

The corresponding p.4.f. is,

£(x) = (8/n) (x/n)PY exp [ -(x/n)P),

for x30, n, >0

=0, othervise. (A 17)

Figure 1 referred to previously, shows Eq. A 17 precisely for the various
f values indicated.



APPENDIX B

Graphical Estimstion of Weibull Parameters

In this report, both the shape parameter, P, wnd the location pare-
meter, 7, are assumed to be knowr. These assumpticns are made in viev of
empirical evidence from experience with field and laboratory failure data that
indicates for some components that these two parameters tend to be constants
over a wide range of applications. The approximate magnitude of these two
parameters must be estimated from prior data in order to use for acceptance

purposes the sampling plans reported here. This appendix outlines twvo simple
graphical methods for estimating not only these two parameters but also the
scale parameter n . Since the two methods to be described will involve plotting
the lifelength data on probability papers, each of the two methols alsc provide
a graphical test of fit to warn against the use of Weibull sampling plans 1if

the fit is "poor". The two methods I & II of estimation are as follows:

Method I
This method is based on the fact that Eq. AB can be written as the
following upon taking the logarithm twice:

1n 1n 1 =-f1ln 1n (x-7
n T 3) n+ P ln (x-7)

=-1na + P 1n (x-7) (B 1)

Hence on a graph paper with 1ln versus ln - 1ln coordinates the Weibull c.d.f.
will appear as a straight line. The following sketch depicts such a straight

line.
- , — 1lnn __*.__.4
P
] l—"_ in(x-7)
ina Slope = P

#;;‘
1n 1n __Epﬂ.

1-F(x)
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The Weibull probability paper (Figure 4) has four scales at its borders, two
horizontal and two vertical. The upper and right scales are called the principsl
scales. The principle scales are linear because they are for the plotting

of 1n(x-7) versus 1n 1n ﬁ;y vhich are linearly related according to Eq. Bl.

The lower and left scales, ths auxilliary scales, are non-linear being calibrated
for direct plotting of raw data. The two additional vertical scales along the
righthand border of the paper labeled u/n and o/n are calidbrated for B up to
7.0 in accordance with Eqs. Al3 and Alk, i.e., u/n = I'(b+l) ignoring 7 and
o/n = [N(2v41) - 12 (b+1)]§. These scales facilitate calculation of u and o
as vill be illustrated later. The additional scales that appear at the top of
the graph paper are for small values of f (0.02 to 1.5).

Consider the following hypothetical lifelength data (in units of 100 hrs.)
consisting of ten ordered observations, Xy s X, SEE = X0 for wvhich we

estimate P(xi) by the so-called plotting positions: 1/(10+1), for
1 =1,2,...,10. (See the last paragraph of this appendix for other plotting
conventions.) The observations are = 27.5, 31, 34, 38 hl Ly, 47, 51 57 and
64. The corresponding plotting positions are = .09, . .36, .6, .55,
.64, .73, .82 and .91. These ten points plotted on the Weibu.ll probability
paper give Curve A (Fig. 4) which upon extending toward the bottom scale
gives 7 = 15. If, however, the smallest observation, x = 27.5, vere chosen
as an estimate of 7, the data after subtracting 27.5 from each observation
vill be = 0, 3.5, 6.5, 10.5, 13.5, 16.5, 19.5, 23.5, 29.5 and 36.5. With
plotting positions remaining unchanged, the Weibull plot will then be Curve B.
The fact that these two curves (A and B) have opposite curvatures indicates
that the true location parameter 7 lies somewhere between 15 and 27.5. Upon
several trials, ; = 20 (or thereabouts) gives the adjusted observations as
7.5, 11, 14, 18, 21, 24, 27, 31, 37 and Lk, Using the same plotting positions
as before, these adjusted obrwntions give Curve C which is approximtely
linear. Curve C gives 1n a . ..96, as= 390 (x in hundreds of hours), f = 1.85,
n = 27.5 x 100 hours. Some other life quality measures may nov be estimated
by & fev simple calculations, thus (in hours), (Refer to Figure 4),

Mean = 2000 + .888(2750) = L442 (See Eq. Al3)

Std. dev. = .5(2750) = 1375 (See Eq. A 14)

Reliability function at 2300 or R(2300 - 2000)

= R(300) =1 - .019) = .981

- e v— —— ——— ——— —



Reliable life at 90% = 2000 + 780 = 2780
Reliable life at 95% = 2000 + 530 = 2530
Median life = 2000 + 2230 = 4230

Initial faflure rate per 100 brs. = .26%.

Since (x-7) instead of x are plotted, the initial failure rate referred to

in the last entry is actually the failur: rate of ccmponents at age = =000 hrs.
The Curves labeled L(yi) and U(yi) are lover and upper confidence bands on
F(x) wi-* . ccafidence coefficient = 80%. For calculations to determ!ne

these curves, readers are referred to Kaoel

Metheod II
This method is based on the relationship Y = (X—7)/n introduced in

obtaining Eq. Al0 from Eq. AB vhich is shown in the folloving sketch.

1 L e O(y) =1 - c"’ﬂ xa7.B
-(___
L - FKx)=l-e "
' / -
"I e
0 lLs l' — ’/__. t -
Yy ' P 4

From this process of standardization, wve see that for 0 < p' <1,
p' = F(x) = G(y). Therefore we may write,

y =0"lp') = a2 (r(x)) (3 2)
But the relationship Y = (x-7)/q is the same as,
X = w+7 (B 3)

vhich is the equation of a straight line. Hence on a graph paper wvith the

-53-
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Y-axis calidrated in accordence vith Eq. B2, the Weibull c.d.f. will again
be a straight line. As a mitter of fact, the above argument holds for all
distributions, Weibull or otherwise, where F and G are the original and the
standardized c.d.f. respectively. Unfortunately, for the Weibull case, the
standard c.d.f., G, and hence also its inverse function (}"l
(This is not so for the normal distribution or the exponential distribution.)
As a result, for each value of f, it i{s necessary to give a different calibration
for v from Eq. B2. This is precisely what is done for this second kind of
Weibull probability paper (Fig. 5). The y-scale calibration for values other
than integer values of P may be interpolated between indicated integers.
For B-values of 1.0 and 3.0 (Curve D & E), the reversal of curvatures was
noted. A few trials with other values resulted in Curve F with B = 1,85.
For s = 1,85 it was found that the plot of original data was approximately
linear. Extending Curve F toward the bottom border gives ; = 2000. The
estimate for the scale rarameter n = 2750 is obtained by taking the difference
between the X-value corresjgonding to Y =1 and ;which is the x-value correspond-
ing to Y = 0. Note that n ig the slope of the line labeled Curve F.

There are many plotting conventions for estimating p, = F(xi) in addition

, depends on B.

to 1/(n+1) used here. The following gives a listing of some more widely used
ones:

(1) sample c.d.f., i/n

(2) Symmetrical Sample c.d.f., (1-%)/n

(3) Mean of c.d.f., 1/(n+l)

(L) Mode of c.d.f., (i-1)/(n-1)

(5) Median of c.d.f., BY (4 | 1, n-1 + 1)

(6) c.a.r. of EX,, c(mi) = F(Exi)

(7) Corrected c.d.f, (1-3/8)/(n+t)

The merits of some of these plotting conventions are discussed in Chernoff and
L:lebemanaa for the normal distribution and in Kimba1123 for the normal and
Type I extreme-value distribution as well as in the text by Blouzh wvhich
concerns itself mainly with the properties of plotting convention (7) in the
list above for underlying normel distributions.
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